SLASF44A May   2023  – June 2024 AFE78201 , AFE88201

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Timing Requirements
    7. 5.7  Timing Diagrams
    8. 5.8  Typical Characteristics: VOUT DAC
    9. 5.9  Typical Characteristics: ADC
    10. 5.10 Typical Characteristics: Reference
    11. 5.11 Typical Characteristics: Power Supply
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Digital-to-Analog Converter (DAC) Overview
        1. 6.3.1.1 DAC Resistor String
        2. 6.3.1.2 DAC Buffer Amplifier
        3. 6.3.1.3 DAC Transfer Function
        4. 6.3.1.4 DAC Gain and Offset Calibration
        5. 6.3.1.5 Programmable Slew Rate
        6. 6.3.1.6 DAC Register Structure and CLEAR State
      2. 6.3.2  Analog-to-Digital Converter (ADC) Overview
        1. 6.3.2.1 ADC Operation
        2. 6.3.2.2 ADC Custom Channel Sequencer
        3. 6.3.2.3 ADC Synchronization
        4. 6.3.2.4 ADC Offset Calibration
        5. 6.3.2.5 External Monitoring Inputs
        6. 6.3.2.6 Temperature Sensor
        7. 6.3.2.7 Self-Diagnostic Multiplexer
        8. 6.3.2.8 ADC Bypass
      3. 6.3.3  Programmable Out-of-Range Alarms
        1. 6.3.3.1 Alarm-Based Interrupts
        2. 6.3.3.2 Alarm Action Configuration Register
        3. 6.3.3.3 Alarm Voltage Generator
        4. 6.3.3.4 Temperature Sensor Alarm Function
        5. 6.3.3.5 Internal Reference Alarm Function
        6. 6.3.3.6 ADC Alarm Function
        7. 6.3.3.7 Fault Detection
      4. 6.3.4  IRQ
      5. 6.3.5  Internal Reference
      6. 6.3.6  Integrated Precision Oscillator
      7. 6.3.7  Precision Oscillator Diagnostics
      8. 6.3.8  One-Time Programmable (OTP) Memory
      9. 6.3.9  GPIO
      10. 6.3.10 Timer
      11. 6.3.11 Unique Chip Identifier (ID)
      12. 6.3.12 Scratch Pad Register
    4. 6.4 Device Functional Modes
      1. 6.4.1 Register Built-In Self-Test (RBIST)
      2. 6.4.2 DAC Power-Down Mode
      3. 6.4.3 Reset
    5. 6.5 Programming
      1. 6.5.1 Communication Setup
        1. 6.5.1.1 SPI Mode
        2. 6.5.1.2 UART Mode
      2. 6.5.2 GPIO Programming
      3. 6.5.3 Serial Peripheral Interface (SPI)
        1. 6.5.3.1 SPI Frame Definition
        2. 6.5.3.2 SPI Read and Write
        3. 6.5.3.3 Frame Error Checking
        4. 6.5.3.4 Synchronization
      4. 6.5.4 UART Interface
        1. 6.5.4.1 UART Break Mode (UBM)
      5. 6.5.5 Status Bits
      6. 6.5.6 Watchdog Timer
  8. Register Maps
    1. 7.1 AFEx8201 Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Multichannel Configuration
    2. 8.2 Typical Application
      1. 8.2.1 Analog Output Module
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 XTR305
            1. 8.2.1.2.1.1 Current-Output Mode
            2. 8.2.1.2.1.2 Voltage Output Mode
            3. 8.2.1.2.1.3 Diagnostic Features
        3. 8.2.1.3 Application Curves
    3. 8.3 Initialization Setup
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RRU|24
Thermal pad, mechanical data (Package|Pins)
Orderable Information

GPIO

AFEx8201 feature multiple GPIO pins, each independently configurable in either input only or output only or input-ouput mode through GPIO_CFG and GPIO registers. Select either push-pull or pseudo open drain sub modes supported when the GPIO is in output mode. No dedicated GPIO pins are present since the same pins are also configurable for communication interfaces. Based on the selection of the interface protocol and how many pins are used for communication purposes, the AFEx8201 have up to four available GPIOs. Refer to Section 6.5.1 for detailed diagrams of available GPIOs in each communication mode. If a GPIO pin is unused or undriven, the pin must be tied resistively to either IOVDD or GND according to the connection diagrams in Section 6.5.1. Unconnected floating input pins lead to unknown states for the communication interfaces and varying supply currents for the AFEx8201. When functioning as an output, each GPIO pin is capable of sourcing and sinking current and when functioning as an input the register address 0x1C reflects the digital state of the GPIO pins (for details of source and sink capabilities and input thresholds, see Section 5.5). The minimum pulse width for transition detection is tPULSE_GPIO. When a state transition occurs on a GPIO input, the new state must be held for a minimum of tPULSE_GPIO for detection by the AFEx8201.