SPRS681G October   2010  – March 2015 AM3892 , AM3894

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Device Comparison
    1. 3.1 Device Characteristics
    2. 3.2 ARM Subsystem
      1. 3.2.1 ARM Cortex-A8 RISC Processor
      2. 3.2.2 Embedded Trace Module (ETM)
      3. 3.2.3 ARM Cortex-A8 Interrupt Controller (AINTC)
      4. 3.2.4 System Interconnect
    3. 3.3 Media Controller
    4. 3.4 Inter-Processor Communication
      1. 3.4.1 Mailbox Module
        1. 3.4.1.1 Mailbox Registers
      2. 3.4.2 Spinlock Module
        1. 3.4.2.1 Spinlock Registers
    5. 3.5 Power, Reset and Clock Management (PRCM) Module
    6. 3.6 SGX530 (AM3894 only)
    7. 3.7 Memory Map Summary
      1. 3.7.1 L3 Memory Map
      2. 3.7.2 L4 Memory Map
        1. 3.7.2.1 L4 Standard Peripheral
        2. 3.7.2.2 L4 High-Speed Peripheral
      3. 3.7.3 TILER Extended Addressing Map
      4. 3.7.4 Cortex™-A8 Memory Map
  4. Terminal Configuration and Functions
    1. 4.1 Pin Assignments
      1. 4.1.1 Pin Map (Bottom View)
    2. 4.2 Terminal Functions
      1. 4.2.1  Boot Configuration
      2. 4.2.2  DDR2 and DDR3 Memory Controller Signals
      3. 4.2.3  Ethernet Media Access Controller (EMAC) Signals
      4. 4.2.4  General-Purpose Input/Output (GPIO) Signals
      5. 4.2.5  General-Purpose Memory Controller (GPMC) Signals
      6. 4.2.6  High-Definition Multimedia Interface (HDMI) Signals
      7. 4.2.7  Inter-Integrated Circuit (I2C) Signals
      8. 4.2.8  Multichannel Audio Serial Port Signals
      9. 4.2.9  Multichannel Buffered Serial Port Signals
      10. 4.2.10 Oscillator/Phase-Locked Loop (PLL) Signals
      11. 4.2.11 Peripheral Component Interconnect Express (PCIe) Signals
      12. 4.2.12 Reset, Interrupts, and JTAG Interface Signals
      13. 4.2.13 Secure Digital/Secure Digital Input Output (SD/SDIO) Signals
      14. 4.2.14 Serial ATA Signals
      15. 4.2.15 Serial Peripheral Digital Interconnect Format (SPI) Signals
      16. 4.2.16 Timer Signals
      17. 4.2.17 Universal Asynchronous Receiver/Transmitter (UART) Signals
      18. 4.2.18 Universal Serial Bus (USB) Signals
      19. 4.2.19 Video Input Signals
      20. 4.2.20 Digital Video Output Signals
      21. 4.2.21 Analog Video Output Signals
      22. 4.2.22 Reserved Pins
      23. 4.2.23 Supply Voltages
      24. 4.2.24 Ground Pins (VSS)
  5. Specifications
    1. 5.1 Absolute Maximum Ratings (Unless Otherwise Noted)
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Resistance Characteristics
  6. Device Configurations
    1. 6.1 Control Module
    2. 6.2 Revision Identification
    3. 6.3 Debugging Considerations
      1. 6.3.1 Pullup and Pulldown Resistors
    4. 6.4 Boot Sequence
      1. 6.4.1 Boot Mode Registers
    5. 6.5 Pin Multiplexing Control
      1. 6.5.1 PINCTRLx Register Descriptions
    6. 6.6 How to Handle Unused Pins
  7. System Interconnect
    1. 7.1 L3 Interconnect
    2. 7.2 L4 Interconnect
  8. Power, Reset, Clocking, and Interrupts
    1. 8.1 Power Supplies
      1. 8.1.1 Voltage and Power Domains
      2. 8.1.2 Power Domains
      3. 8.1.3 1-V AVS and 1-V Constant Power Domains
      4. 8.1.4 SmartReflex™
      5. 8.1.5 Memory Power Management
      6. 8.1.6 IO Power-Down Modes
      7. 8.1.7 Supply Sequencing
      8. 8.1.8 Power-Supply Decoupling
    2. 8.2 Reset
      1. 8.2.1  System-Level Reset Sources
      2. 8.2.2  Power-On Reset (POR pin)
      3. 8.2.3  External Warm Reset (RESET pin)
      4. 8.2.4  Emulation Warm Reset
      5. 8.2.5  Watchdog Reset
      6. 8.2.6  Software Global Cold Reset
      7. 8.2.7  Software Global Warm Reset
      8. 8.2.8  Test Reset (TRST pin)
      9. 8.2.9  Local Reset
      10. 8.2.10 Reset Priority
      11. 8.2.11 Reset Status Register
      12. 8.2.12 PCIe Reset Isolation
      13. 8.2.13 RSTOUT
      14. 8.2.14 Effect of Reset on Emulation and Trace
      15. 8.2.15 Reset During Power Domain Switching
      16. 8.2.16 Pin Behaviors at Reset
      17. 8.2.17 Reset Electrical Data and Timing
    3. 8.3 Clocking
      1. 8.3.1 Device Clock Inputs
        1. 8.3.1.1 Using the Internal Oscillators
      2. 8.3.2 SERDES_CLKN and SERDES_CLKP Input Clock
      3. 8.3.3 CLKIN32 Input Clock
      4. 8.3.4 PLLs
        1. 8.3.4.1 PLL Programming Limits
        2. 8.3.4.2 PLL Power Supply Filtering
        3. 8.3.4.3 PLL Locking Sequence
        4. 8.3.4.4 PLL Registers
      5. 8.3.5 SYSCLKs
      6. 8.3.6 Module Clocks
      7. 8.3.7 Output Clock Select Logic
    4. 8.4 Interrupts
      1. 8.4.1 Interrupt Summary List
      2. 8.4.2 Cortex™-A8 Interrupts
  9. Peripheral Information and Timings
    1. 9.1  Parameter Information
      1. 9.1.1 1.8-V and 3.3-V Signal Transition Levels
      2. 9.1.2 3.3-V Signal Transition Rates
      3. 9.1.3 Timing Parameters and Board Routing Analysis
    2. 9.2  Recommended Clock and Control Signal Transition Behavior
    3. 9.3  DDR2 and DDR3 Memory Controller
      1. 9.3.1 DDR2 Routing Specifications
        1. 9.3.1.1 Board Designs
        2. 9.3.1.2 DDR2 Interface
          1. 9.3.1.2.1  DDR2 Interface Schematic
          2. 9.3.1.2.2  Compatible JEDEC DDR2 Devices
          3. 9.3.1.2.3  PCB Stackup
          4. 9.3.1.2.4  Placement
          5. 9.3.1.2.5  DDR2 Keepout Region
          6. 9.3.1.2.6  Bulk Bypass Capacitors
          7. 9.3.1.2.7  High-Speed Bypass Capacitors
          8. 9.3.1.2.8  Net Classes
          9. 9.3.1.2.9  DDR2 Signal Termination
          10. 9.3.1.2.10 VREFSSTL_DDR Routing
        3. 9.3.1.3 DDR2 CK and ADDR_CTRL Routing
      2. 9.3.2 DDR3 Routing Specifications
        1. 9.3.2.1  Board Designs
          1. 9.3.2.1.1 DDR3 versus DDR2
        2. 9.3.2.2  DDR3 Device Combinations
          1. 9.3.2.2.1 DDR3 EMIFs
        3. 9.3.2.3  DDR3 Interface Schematic
          1. 9.3.2.3.1 32-Bit DDR3 Interface
          2. 9.3.2.3.2 16-Bit DDR3 Interface
        4. 9.3.2.4  Compatible JEDEC DDR3 Devices
        5. 9.3.2.5  PCB Stackup
        6. 9.3.2.6  Placement
        7. 9.3.2.7  DDR3 Keepout Region
        8. 9.3.2.8  Bulk Bypass Capacitors
        9. 9.3.2.9  High-Speed Bypass Capacitors
          1. 9.3.2.9.1 Return Current Bypass Capacitors
        10. 9.3.2.10 Net Classes
        11. 9.3.2.11 DDR3 Signal Termination
        12. 9.3.2.12 VREFSSTL_DDR Routing
        13. 9.3.2.13 VTT
        14. 9.3.2.14 CK and ADDR_CTRL Topologies and Routing Definition
          1. 9.3.2.14.1 Four DDR3 Devices
            1. 9.3.2.14.1.1 CK and ADDR_CTRL Topologies, Four DDR3 Devices
            2. 9.3.2.14.1.2 CK and ADDR_CTRL Routing, Four DDR3 Devices
          2. 9.3.2.14.2 Two DDR3 Devices
            1. 9.3.2.14.2.1 CK and ADDR_CTRL Topologies, Two DDR3 Devices
            2. 9.3.2.14.2.2 CK and ADDR_CTRL Routing, Two DDR3 Devices
          3. 9.3.2.14.3 One DDR3 Device
            1. 9.3.2.14.3.1 CK and ADDR_CTRL Topologies, One DDR3 Device
            2. 9.3.2.14.3.2 CK and ADDR_CTRL Routing, One DDR3 Device
        15. 9.3.2.15 Data Topologies and Routing Definition
          1. 9.3.2.15.1 DQS, DQ and DM Topologies, Any Number of Allowed DDR3 Devices
          2. 9.3.2.15.2 DQS, DQ and DM Routing, Any Number of Allowed DDR3 Devices
        16. 9.3.2.16 Routing Specification
          1. 9.3.2.16.1 CK and ADDR_CTRL Routing Specification
          2. 9.3.2.16.2 DQS and DQ Routing Specification
      3. 9.3.3 DDR2 and DDR3 Memory Controller Register Descriptions
      4. 9.3.4 DDR2 and DDR3 PHY Register Descriptions
      5. 9.3.5 DDR2 and DDR3 Memory Controller Electrical Data and Timing
    4. 9.4  Emulation Features and Capability
      1. 9.4.1 Advanced Event Triggering (AET)
      2. 9.4.2 Trace
      3. 9.4.3 IEEE 1149.1 JTAG
        1. 9.4.3.1 JTAG ID (JTAGID) Register Description
        2. 9.4.3.2 JTAG Electrical Data and Timing
      4. 9.4.4 IEEE 1149.7 cJTAG
    5. 9.5  Enhanced Direct Memory Access (EDMA) Controller
      1. 9.5.1 EDMA Channel Synchronization Events
      2. 9.5.2 EDMA Peripheral Register Descriptions
    6. 9.6  Ethernet Media Access Controller (EMAC)
      1. 9.6.1 EMAC Peripheral Register Descriptions
      2. 9.6.2 EMAC Electrical Data and Timing
      3. 9.6.3 Management Data Input and Output (MDIO)
        1. 9.6.3.1 MDIO Peripheral Register Descriptions
        2. 9.6.3.2 MDIO Electrical Data and Timing
    7. 9.7  General-Purpose Input and Output (GPIO)
      1. 9.7.1 GPIO Peripheral Register Descriptions
      2. 9.7.2 GPIO Electrical Data and Timing
    8. 9.8  General-Purpose Memory Controller (GPMC) and Error Locator Module (ELM)
      1. 9.8.1 GPMC and ELM Peripheral Register Descriptions
      2. 9.8.2 GPMC Electrical Data and Timing
        1. 9.8.2.1 GPMC and NOR Flash Interface Synchronous Mode Timing
        2. 9.8.2.2 GPMC and NOR Flash Interface Asynchronous Mode Timing
        3. 9.8.2.3 GPMC and NAND Flash Interface Asynchronous Mode Timing
    9. 9.9  High-Definition Multimedia Interface (HDMI)
      1. 9.9.1 HDMI Interface Design Specifications
        1. 9.9.1.1 HDMI Interface Schematic
        2. 9.9.1.2 TMDS Routing
        3. 9.9.1.3 DDC Signals
        4. 9.9.1.4 HDMI ESD Protection Device (Required)
        5. 9.9.1.5 PCB Stackup Specifications
        6. 9.9.1.6 Grounding
      2. 9.9.2 HDMI Peripheral Register Descriptions
    10. 9.10 High-Definition Video Processing Subsystem (HDVPSS)
      1. 9.10.1 HDVPSS Electrical Data and Timing
      2. 9.10.2 Video DAC Guidelines and Electrical Data and Timing
    11. 9.11 Inter-Integrated Circuit (I2C)
      1. 9.11.1 I2C Peripheral Register Descriptions
      2. 9.11.2 I2C Electrical Data and Timing
    12. 9.12 Multichannel Audio Serial Port (McASP)
      1. 9.12.1 McASP Device-Specific Information
      2. 9.12.2 McASP0, McASP1, and McASP2 Peripheral Register Descriptions
      3. 9.12.3 McASP Electrical Data and Timing
    13. 9.13 Multichannel Buffered Serial Port (McBSP)
      1. 9.13.1 McBSP Peripheral Registers
      2. 9.13.2 McBSP Electrical Data and Timing
    14. 9.14 Peripheral Component Interconnect Express (PCIe)
      1. 9.14.1 PCIe Design and Layout Specifications
        1. 9.14.1.1 Clock Source
        2. 9.14.1.2 PCIe Connections and Interface Compliance
          1. 9.14.1.2.1 Coupling Capacitors
          2. 9.14.1.2.2 Polarity Inversion
          3. 9.14.1.2.3 Lane Reversal
        3. 9.14.1.3 Non-Standard PCIe Connections
          1. 9.14.1.3.1 PCB Stackup Specifications
          2. 9.14.1.3.2 Routing Specifications
      2. 9.14.2 PCIe Peripheral Register Descriptions
      3. 9.14.3 PCIe Electrical Data and Timing
    15. 9.15 Real-Time Clock (RTC)
      1. 9.15.1 RTC Register Descriptions
    16. 9.16 Secure Digital and Secure Digital Input Output (SD and SDIO)
      1. 9.16.1 SD and SDIO Peripheral Register Descriptions
      2. 9.16.2 SD and SDIO Electrical Data and Timing
        1. 9.16.2.1 SD Identification and Standard SD Mode
        2. 9.16.2.2 High-Speed SD Mode
    17. 9.17 Serial ATA Controller (SATA)
      1. 9.17.1 SATA Interface Design Specifications
        1. 9.17.1.1 SATA Interface Schematic
        2. 9.17.1.2 Compatible SATA Components and Modes
        3. 9.17.1.3 PCB Stackup Specifications
        4. 9.17.1.4 Routing Specifications
        5. 9.17.1.5 Coupling Capacitors
      2. 9.17.2 SATA Peripheral Register Descriptions
    18. 9.18 Serial Peripheral Interface (SPI)
      1. 9.18.1 SPI Peripheral Register Descriptions
      2. 9.18.2 SPI Electrical Data and Timing
    19. 9.19 Timers
      1. 9.19.1 Timer Peripheral Register Descriptions
      2. 9.19.2 Timer Electrical Data and Timing
    20. 9.20 Universal Asynchronous Receiver and Transmitter (UART)
      1. 9.20.1 UART Peripheral Register Descriptions
      2. 9.20.2 UART Electrical Data and Timing
    21. 9.21 Universal Serial Bus (USB2.0)
      1. 9.21.1 USB2.0 Peripheral Register Descriptions
      2. 9.21.2 USB2.0 Electrical Data and Timing
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
      2. 10.1.2 Device and Development Support-Tool Nomenclature
      3. 10.1.3 Device Speed Range Overview
    2. 10.2 Documentation Support
    3. 10.3 Related Links
    4. 10.4 Community Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  11. 11Mechanical Packaging and Orderable Information
    1. 11.1 Packaging Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • CYG|1031
Thermal pad, mechanical data (Package|Pins)
Orderable Information

9 Peripheral Information and Timings

9.1 Parameter Information

AM3894 AM3892 pm_tstcirc_prs403.gifFigure 9-1 Test Load Circuit for AC Timing Measurements

The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.

9.1.1 1.8-V and 3.3-V Signal Transition Levels

All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3-V IO, Vref = 1.5 V. For 1.8-V IO, Vref = 0.9 V.

AM3894 AM3892 pm_io_volt_prs403.gifFigure 9-2 Input and Output Voltage Reference Levels for AC Timing Measurements

All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL MAX and VOH MIN for output clocks.

AM3894 AM3892 pm_transvolt_prs403.gifFigure 9-3 Rise and Fall Transition Time Voltage Reference Levels

9.1.2 3.3-V Signal Transition Rates

All timings are tested with an input edge rate of 4 volts per nanosecond (4 V per ns).

9.1.3 Timing Parameters and Board Routing Analysis

The timing parameter values specified in this data manual do not include delays by board routings. As a good board design practice, such delays must always be taken into account. Timing values may be adjusted by increasing or decreasing such delays. TI recommends utilizing the available IO buffer information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature number SPRA839). If needed, external logic hardware such as buffers may be used to compensate any timing differences.

For the DDR2 and DDR3, PCIe, SATA, USB, and HDMI interfaces, IBIS models are not used for timing specification. TI provides, in this document, a PCB routing rule solution for each interface that describes the routing rules used to ensure the interface timings are met. Video DAC guidelines (Section 9.10.2) are also included to discuss important layout considerations.

9.2 Recommended Clock and Control Signal Transition Behavior

All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner.

9.3 DDR2 and DDR3 Memory Controller

The device has a dedicated interface to DDR3 and DDR2 SDRAM. It supports JEDEC standard-compliant DDR2 and DDR3 SDRAM devices with the following features:

  • 16-bit or 32-bit data path to external SDRAM memory
  • Memory device capacity: 64Mb, 128Mb, 256Mb, 512Mb, 1Gb, 2Gb and 4Gb (x16-bit only) devices
  • Support for two independent chip selects, with their corresponding register sets, and independent page tracking
  • Two interfaces with associated DDR2 and DDR3 PHYs
  • Dynamic memory manager allows for interleaving of data between the two DDR interfaces.

For details on the DDR2 and DDR3 Memory Controller, see the DDR2 and DDR3 Memory Controller chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.3.1 DDR2 Routing Specifications

9.3.1.1 Board Designs

TI only supports board designs that follow the specifications outlined in this document. The switching characteristics and the timing diagram for the DDR2 memory controller are shown in Table 9-1 and Figure 9-4.

Table 9-1 Switching Characteristics Over Recommended Operating Conditions for DDR2 Memory Controller

NO. PARAMETER -1G UNIT
MIN MAX
1 tc(DDR_CLK) Cycle time, DDR_CLK 2.5 8 ns
AM3894 AM3892 td_ddr2clk_prabb0.gifFigure 9-4 DDR2 Memory Controller Clock Timing

9.3.1.2 DDR2 Interface

This section provides the timing specification for the DDR2 interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2 memory system without the need for a complex timing closure process. For more information regarding the guidelines for using this DDR2 specification, see Understanding TI’s PCB Routing Rule-Based DDR2 Timing Specification Application Report (SPRAAV0).

9.3.1.2.1 DDR2 Interface Schematic

Figure 9-5 shows the DDR2 interface schematic for a x32 DDR2 memory system. In Figure 9-6 the x16 DDR2 system schematic is identical except that the high-word DDR2 device is deleted.

When not using a DDR2 interface, the proper method of handling the unused pins is to tie off the DQS pins by pulling the non-inverting DQS pin to the DDR_1V8 supply via a 1k-Ω resistor and pulling the inverting DQS pin to ground via a 1k-Ω resistor. This needs to be done for each byte not used. Also, include the 50-Ω pulldown for DDR[x]_VTP. All other DDR interface pins can be left unconnected. Note that the supported modes for use of the DDR EMIF are 32 bits wide, 16 bits wide, or not used.

AM3894 AM3892 ddr2_32b_hl_sch_prs614.gif
A. Vio1.8 is the power supply for the DDR2 memories and the AM389x DDR2 interface.
B. One of these capacitors can be eliminated if the divider and its capacitors are placed near a VREF pin.
Figure 9-5 32-Bit DDR2 High-Level Schematic
AM3894 AM3892 ddr2_16b_hl_sch_prs614.gif
A. Vio1.8 is the power supply for the DDR2 memories and the AM389x DDR2 interface.
B. One of these capacitors can be eliminated if the divider and its capacitors are placed near a VREF pin.
Figure 9-6 16-Bit DDR2 High-Level Schematic

9.3.1.2.2 Compatible JEDEC DDR2 Devices

Table 9-2 shows the parameters of the JEDEC DDR2 devices that are compatible with this interface. Generally, the DDR2 interface is compatible with x16 DDR2-800 speed grade DDR2 devices.

Table 9-2 Compatible JEDEC DDR2 Devices

NO. PARAMETER MIN MAX UNIT
1 JEDEC DDR2 device speed grade(1) DDR2-800
2 JEDEC DDR2 device bit width x16 x16 Bits
3 JEDEC DDR2 device count(2) 1 2 Devices
4 JEDEC DDR2 device ball count(3) 84 92 Balls
(1) Higher DDR2 speed grades are supported due to inherent JEDEC DDR2 backwards compatibility.
(2) One DDR2 device is used for a 16-bit DDR2 memory system. Two DDR2 devices are used for a 32-bit DDR2 memory system.
(3) The 92-ball devices are retained for legacy support. New designs will migrate to 84-ball DDR2 devices. Electrically, the 92- and 84-ball DDR2 devices are the same.

9.3.1.2.3 PCB Stackup

The minimum stackup required for routing the AM389x device is a six-layer stackup as shown in Table 9-3. Additional layers may be added to the PCB stackup to accommodate other circuitry or to reduce the size of the PCB footprint.

Table 9-3 Minimum PCB Stackup

LAYER TYPE DESCRIPTION
1 Signal Top routing mostly horizontal
2 Plane Ground
3 Plane Power
4 Signal Internal routing
5 Plane Ground
6 Signal Bottom routing mostly vertical

Complete stackup specifications are provided in Table 9-4.

Table 9-4 PCB Stackup Specifications

NO. PARAMETER MIN TYP MAX UNIT
1 PCB routing and plane layers 6
2 Signal routing layers 3
3 Full ground layers under DDR2 routing region 2
4 Number of ground plane cuts allowed within DDR routing region 0
5 Number of ground reference planes required for each DDR2 routing layer 1
6 Number of layers between DDR2 routing layer and reference ground plane 0
7 PCB routing feature size 4 Mils
8 PCB trace width, w 4 Mils
9 PCB BGA escape via pad size(1) 18 20 Mils
10 PCB BGA escape via hole size(1) 10 Mils
11 Processor BGA pad size 0.3 mm
12 DDR2 device BGA pad size(2)
13 Single-ended impedance, Zo 50 75 Ω
14 Impedance control(3) Z-5 Z Z+5 Ω
(1) A 20/10 via may be used if enough power routing resources are available. An 18/10 via allows for more flexible power routing to the processor.
(2) For the DDR2 device BGA pad size, see the DDR2 device manufacturer documentation.
(3) Z is the nominal singled-ended impedance selected for the PCB specified by item 13.

9.3.1.2.4 Placement

Figure 9-7 shows the required placement for the processor as well as the DDR2 devices. The dimensions for this figure are defined in Table 9-5. The placement does not restrict the side of the PCB on which the devices are mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For a 16-bit DDR memory system, the high-word DDR2 device is omitted from the placement.

AM3894 AM3892 dev_plac_prabb0.gifFigure 9-7 AM389x Device and DDR2 Device Placement

Table 9-5 Placement Specifications

NO. PARAMETER MIN MAX UNIT
1 X + Y(1)(2) 1660 Mils
2 X'(1)(2) 1280 Mils
3 X' Offset(1)(2)(3) 650 Mils
4 DDR2 keepout region(4)
5 Clearance from non-DDR2 signal to DDR2 keepout region(5) 4 w
(1) For dimension definitions, see Figure 9-5.
(2) Measurements from center of processor to center of DDR2 device.
(3) For 16-bit memory systems, it is recommended that X' offset be as small as possible.
(4) DDR2 keepout region to encompass entire DDR2 routing area.
(5) Non-DDR2 signals allowed within DDR2 keepout region provided they are separated from DDR2 routing layers by a ground plane.

9.3.1.2.5 DDR2 Keepout Region

The region of the PCB used for the DDR2 circuitry must be isolated from other signals. The DDR2 keepout region is defined for this purpose and is shown in Figure 9-8. The size of this region varies with the placement and DDR routing. Additional clearances required for the keepout region are shown in Table 9-5.

AM3894 AM3892 ddr2_kpot_rgn_prabb0.gifFigure 9-8 DDR2 Keepout Region

NOTE

The region shown in should encompass all the DDR2 circuitry and varies depending on placement. Non-DDR2 signals should not be routed on the DDR signal layers within the DDR2 keepout region. Non-DDR2 signals may be routed in the region, provided t hey are routed on layers separated from DDR2 signal layers by a ground layer. No breaks should be allowed in the reference ground layers in this region. In addition, the 1.8V power plane should cover the entire keepout region. Routes for the two DDR interfaces must be separated by at least 4x; the more separation, the better.

9.3.1.2.6 Bulk Bypass Capacitors

Bulk bypass capacitors are required for moderate speed bypassing of the DDR2 and other circuitry. Table 9-6 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the DDR2 interfaces and DDR2 device. Additional bulk bypass capacitance may be needed for other circuitry.

Table 9-6 Bulk Bypass Capacitors

No. Parameter Min Max Unit
1 DVDD18 bulk bypass capacitor count(1) 6 Devices
2 DVDD18 bulk bypass total capacitance 60 μF
3 DDR#1 bulk bypass capacitor count(1) 1 Devices
4 DDR#1 bulk bypass total capacitance(1) 10 μF
5 DDR#2 bulk bypass capacitor count(2) 1 Devices
6 DDR#2 bulk bypass total capacitance(1)(2) 10 μF
(1) These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed (HS) bypass capacitors. Use half of these capacitors for DDR[0] and half for DDR[1].
(2) Only used on 32-bit wide DDR2 memory systems.

9.3.1.2.7 High-Speed Bypass Capacitors

High-speed (HS) bypass capacitors are critical for proper DDR2 interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass capacitors, processor DDR power, and processor DDR ground connections. Table 9-7 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB.

Table 9-7 High-Speed Bypass Capacitors

NO. PARAMETER MIN MAX UNIT
1 HS bypass capacitor package size(1) 0402 10 Mils
2 Distance from HS bypass capacitor to device being bypassed 250 Mils
3 Number of connection vias for each HS bypass capacitor(2) 2 Vias
4 Trace length from bypass capacitor contact to connection via 1 30 Mils
5 Number of connection vias for each processor power and ground ball 1 Vias
6 Trace length from processor power and ground ball to connection via 35 Mils
7 Number of connection vias for each DDR2 device power and ground ball 1 Vias
8 Trace length from DDR2 device power and ground ball to connection via 35 Mils
9 DVDD18 HS bypass capacitor count(3)(4) 40 Devices
10 DVDD18 HS bypass capacitor total capacitance(4) 2.4 μF
11 DDR device HS bypass capacitor count(3)(5) 8 Devices
12 DDR device HS bypass capacitor total capacitance(5) 0.4 μF
(1) LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.
(2) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.
(3) These devices should be placed as close as possible to the device being bypassed.
(4) Use half of these capacitors for DDR[0] and half for DDR[1].
(5) Per DDR device.

9.3.1.2.8 Net Classes

Table 9-8 lists the clock net classes for the DDR2 interface. Table 9-9 lists the signal net classes, and associated clock net classes, for the signals in the DDR2 interface. These net classes are used for the termination and routing rules that follow.

Table 9-8 Clock Net Class Definitions

CLOCK NET CLASS PROCESSOR PIN NAMES
CK DDR[x]_CLK[x] and DDR[x]_CLK[x]
DQS0 DDR[x]_DQS[0] and DDR[x]_DQS[0]
DQS1 DDR[x]_DQS[1] and DDR[x]_DQS[1]
DQS2(1) DDR[x]_DQS[2] and DDR[x]_DQS[2]
DQS3(1) DDR[x]_DQS[3] and DDR[x]_DQS[3]
(1) Only used on 32-bit wide DDR2 memory systems.

Table 9-9 Signal Net Class Definitions

SIGNAL NET CLASS ASSOCIATED CLOCK
NET CLASS
PROCESSOR PIN NAMES
ADDR_CTRL CK DDR[x]_BA[2:0], DDR[x]_A[14:0], DDR[x]_CS[x], DDR[x]_CAS, DDR[x]_RAS, DDR[x]_WE, DDR[x]_CKE, DDR[x]_ODT[x]
DQ0 DQS0 DDR[x]_D[7:0], DDR[x]_DQM[0]
DQ1 DQS1 DDR[x]_D[15:8], DDR[x]_DQM[1]
DQ2(1) DQS2 DDR[x]_D[23:16], DDR[x]_DQM[2]
DQ3(1) DQS3 DDR[x]_D[31:24], DDR[x]_DQM[3]
(1) Only used on 32-bit wide DDR2 memory systems.

9.3.1.2.9 DDR2 Signal Termination

Signal terminators are required in CK and ADDR_CTRL net classes. Serial terminators may be used on data lines to reduce EMI risk; however, serial terminations are the only type permitted. ODT's are integrated on the data byte net classes. They should be enabled to ensure signal integrity.Table 9-10 shows the specifications for the series terminators.

Table 9-10 DDR2 Signal Terminations

NO. PARAMETER MIN TYP MAX UNIT
1 CK net class(1)(4) 0 10 Ω
2 ADDR_CTRL net class(1)(2)(3)(4) 0 22 Zo Ω
3 Data byte net classes (DQS0-DQS3, DQ0-DQ3)(5) 0 0 Ω
(1) Only series termination is permitted, parallel or SST specifically disallowed on board.
(2) Terminator values larger than typical only recommended to address EMI issues.
(3) Termination value should be uniform across net class.
(4) Only required for EMI reduction.
(5) No external terminations allowed for data byte net classes. ODT is to be used.

9.3.1.2.10 VREFSSTL_DDR Routing

VREFSSTL_DDR is used as a reference by the input buffers of the DDR2 memories as well as the processor. VREF is intended to be half the DDR2 power supply voltage and should be created using a resistive divider as shown in Figure 9-6. Other methods of creating VREF are not recommended. Figure 9-9 shows the layout guidelines for VREF.

AM3894 AM3892 vref_rtng_toplgy_prabb0.gifFigure 9-9 VREF Routing and Topology

9.3.1.3 DDR2 CK and ADDR_CTRL Routing

Figure 9-10 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A (A'+A'') should be maximized.

AM3894 AM3892 ck_addr_ctrl_prabb0.gifFigure 9-10 CK and ADDR_CTRL Routing and Topology

Table 9-11 CK and ADDR_CTRL Routing Specification (1)

NO. PARAMETER MIN TYP MAX UNIT
1 Center-to-center CK-CK spacing 2w
2 CK and CK skew(1) 25 Mils
3 CK B-to-C skew length mismatch 25 Mils
4 Center-to-center CK to other DDR2 trace spacing(2) 4w
5 CK and ADDR_CTRL nominal trace length(3) CACLM-50 CACLM CACLM+50 Mils
6 ADDR_CTRL-to-CK skew length mismatch 100 Mils
7 ADDR_CTRL-to-ADDR_CTRL skew length mismatch 100 Mils
8 Center-to-center ADDR_CTRL to other DDR2 trace spacing(2) 4w
9 Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(2) 3w
10 ADDR_CTRL B-to-C skew length mismatch 100 Mils
(1) The length of segment A=A'+A′′ as shown in Figure 9-10.
(2) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion.
(3) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.

Figure 9-11 shows the topology and routing for the DQS and DQ net classes; the routes are point to point. Skew matching across bytes is not needed nor recommended.

AM3894 AM3892 dqs_dq_rtng_prabb0.gifFigure 9-11 DQS and DQ Routing and Toplogy

Table 9-12 DQS and DQ Routing Specification

NO. PARAMETER MIN TYP MAX UNIT
1 Center-to-center DQS-DQSn spacing in E0|E1|E2|E3 2w
2 DQS-DQSn skew in E0|E1|E2|E3 25 Mils
3 Center-to-center DQS to other DDR2 trace spacing(1) 4w
4 DQS and DQ nominal trace length (2)(3)(4) DQLM-50 DQLM DQLM+50 Mils
5 DQ-to-DQS skew length mismatch(2)(3)(4) 100 Mils
6 DQ-to-DQ skew length mismatch(2)(3)(4) 100 Mils
7 DQ-to-DQ and DQS via count mismatch(2)(3)(4) 1 Vias
8 Center-to-center DQ to other DDR2 trace spacing(1)(5) 4w
9 Center-to-center DQ to other DQ trace spacing(1)(6)(7) 3w
10 DQ and DQS E skew length mismatch(2)(3)(4) 100 Mils
(1) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion.
(2) A 16-bit DDR memory system has two sets of data net classes; one for data byte 0, and one for data byte 1, each with an associated DQS (2 DQSs) per DDR EMIF used.
(3) A 32-bit DDR memory system has four sets of data net classes; one each for data bytes 0 through 3, and each associated with a DQS (4 DQSs) per DDR EMIF used.
(4) There is no need, and it is not recommended, to skew match across data bytes; that is, from DQS0 and data byte 0 to DQS1 and data byte 1.
(5) DQs from other DQS domains are considered other DDR2 trace.
(6) DQs from other data bytes are considered other DDR2 trace.
(7) DQLM is the longest Manhattan distance of each of the DQS and DQ net classes.

9.3.2 DDR3 Routing Specifications

9.3.2.1 Board Designs

TI only supports board designs utilizing DDR3 memory that follow the specifications in this document. The switching characteristics and timing diagram for the DDR3 memory controller are shown in Table 9-13 and Figure 9-12.

Table 9-13 Switching Characteristics Over Recommended Operating Conditions for DDR3 Memory Controller

NO. PARAMETER -1G UNIT
MIN MAX
1 tc(DDR_CLK) Cycle time, DDR_CLK 1.25 3.3(1) ns
(1) This is the absolute maximum the clock period can be. Actual maximum clock period may be limited by DDR3 speed grade and operating frequency (see the DDR3 memory device data sheet).
AM3894 AM3892 td_ddr2clk_prabb0.gifFigure 9-12 DDR3 Memory Controller Clock Timing

9.3.2.1.1 DDR3 versus DDR2

This specification only covers AM389x processor PCB designs that utilize DDR3 memory. Designs using DDR2 memory should use the PCB design specifications for DDR2 memory in Section 9.3.1. While similar, the two memory systems have different requirements. It is currently not possible to design one PCB that covers both DDR2 and DDR3.

9.3.2.2 DDR3 Device Combinations

Since there are several possible combinations of device counts and single- or dual-side mounting, Table 9-14 summarizes the supported device configurations.

Table 9-14 Supported DDR3 Device Combinations(1)

NUMBER OF DDR3 DEVICES DDR3 DEVICE WIDTH (BITS) MIRRORED? DDR3 EMIF WIDTH (BITS)
1 16 N 16
2 8 Y(2) 16
2 16 N 32
2 16 Y(2) 32
4 8 N 32
4 8 Y(3) 32
(1) This table is per EMIF.
(2) Two DDR3 devices are mirrored when one device is placed on the top of the board and the second device is placed on the bottom of the board.
(3) This is two mirrored pairs of DDR3 devices.

9.3.2.2.1 DDR3 EMIFs

The processor contains two separate DDR3 EMIFs. This specification covers one of these EMIFs (DDR[0]) and, thus, needs to be implemented twice, once for each EMIF. The PCB layout generally turns out to be a semi-mirror with DDR[1] being a flipped version of DDR[0]; the only exception being the DDR3 devices themselves are not flipped unless mounted on opposite sides of the PCB. Requirements are identical between the two EMIFs.

9.3.2.3 DDR3 Interface Schematic

9.3.2.3.1 32-Bit DDR3 Interface

The DDR3 interface schematic varies, depending upon the width of the DDR3 devices used and the width of the bus used (16 or 32 bits). General connectivity is straightforward and very similar. 16-bit DDR devices look like two 8-bit devices. Figure 9-13 and Figure 9-14 show the schematic connections for 32-bit interfaces using x16 devices.

9.3.2.3.2 16-Bit DDR3 Interface

Note that the 16-bit wide interface schematic is practically identical to the 32-bit interface (see Figure 9-13 and Figure 9-14); only the high-word DDR memories are removed and the unused DQS inputs are tied off. The processor DDR[x]_DQS[2] and DDR[x]_DQS[3] pins should be pulled to the DDR supply via 1-kΩ resistors. Similarly, the DDR[x]_DQS[2] and DDR[x]_DQS[3] pins should be pulled to ground via 1-kΩ resistors.

When not using a DDR interface, the proper method of handling the unused pins is to tie off the DQS pins by pulling the non-inverting DQS pin to the DDR_1V5 supply via a 1k-Ω resistor and pulling the inverting DQSn pin to ground via a 1k-Ω resistor. This needs to be done for each byte not used. Also, include the 50-Ω pulldown for DDR[x]_VTP. All other DDR interface pins can be left unconnected. Note that the supported modes for use of the DDR EMIF are 32 bits wide, 16 bits wide, or not used.

AM3894 AM3892 ddr3_2_16bit_prs614.gifFigure 9-13 32-Bit, One-Bank DDR3 Interface Schematic Using Two 16-Bit DDR3 Devices
AM3894 AM3892 ddr3_4_8bit_prs614.gifFigure 9-14 32-Bit, One-Bank DDR3 Interface Schematic Using Four 8-Bit DDR3 Devices

9.3.2.4 Compatible JEDEC DDR3 Devices

Table 9-15 shows the parameters of the JEDEC DDR3 devices that are compatible with this interface. Generally, the DDR3 interface is compatible with DDR3-1600 devices in the x8 or x16 widths.

Table 9-15 Compatible JEDEC DDR3 Devices

NO. PARAMETER MIN MAX UNIT
1 JEDEC DDR3 device speed grade(1) DDR3-800 DDR3-1600
2 JEDEC DDR3 device bit width x8 x16 Bits
3 JEDEC DDR3 device count(2) 2 8 Devices
(1) DDR3 speed grade depends on desired clock rate. Data rate is 2x the clock rate. For DDR3-1600, the clock rate is 800 MHz.
(2) For valid DDR3 device configurations and device counts, see Section 9.3.2.3, Figure 9-13, and Figure 9-14.

9.3.2.5 PCB Stackup

The minimum stackup for routing the DDR3 interface is a four-layer stack up as shown in Table 9-16. Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance SI and EMI performance, or to reduce the size of the PCB footprint. A six-layer stackup is shown in Table 9-17. Complete stackup specifications are provided in Table 9-18.

Table 9-16 Minimum PCB Stackup

LAYER TYPE DESCRIPTION
1 Signal Top routing mostly vertical
2 Plane Split power plane
3 Plane Full ground plane
4 Signal Bottom routing mostly horizontal

Table 9-17 Six-Layer PCB Stackup Suggestion

LAYER TYPE DESCRIPTION
1 Signal Top routing mostly vertical
2 Plane Ground
3 Plane Split power plane
4 Plane Split power plane or Internal routing
5 Plane Ground
6 Signal Bottom routing mostly horizontal

Table 9-18 PCB Stackup Specifications

NO. PARAMETER MIN TYP MAX UNIT
1 PCB routing and plane layers 4 6
2 Signal routing layers 2
3 Full ground reference layers under DDR3 routing region(1) 1
4 Full 1.5-V power reference layers under the DDR3 routing region(1) 1
5 Number of reference plane cuts allowed within DDR routing region(2) 0
6 Number of layers between DDR3 routing layer and reference plane(3) 0
7 PCB routing feature size 4 Mils
8 PCB trace width, w 4 Mils
9 PCB BGA escape via pad size(4) 18 20 Mils
10 PCB BGA escape via hole size 10 Mils
11 Processor BGA pad size 0.3 mm
12 DDR3 device BGA pad size(5)
13 Single-ended impedance, Zo 50 75 Ω
14 Impedance control(6) Z-5 Z Z+5 Ω
(1) Ground reference layers are preferred over power reference layers. Be sure to include bypass caps to accommodate reference layer return current as the trace routes switch routing layers.
(2) No traces should cross reference plane cuts within the DDR routing region. High-speed signal traces crossing reference plane cuts create large return current paths which can lead to excessive crosstalk and EMI radiation.
(3) Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop.
(4) An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available for power routing. An 18-mil pad is required for minimum layer count escape.
(5) For the DDR3 device BGA pad size, see the DDR3 device manufacturer documentation.
(6) Z is the nominal singled-ended impedance selected for the PCB specified by item 13.

9.3.2.6 Placement

Figure 9-15 shows the required placement for the processor as well as the DDR3 devices. The dimensions for this figure are defined in Table 9-19. The placement does not restrict the side of the PCB on which the devices are mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For a 16-bit DDR memory system, the high-word DDR3 devices are omitted from the placement.

AM3894 AM3892 dev_placement_ddr3_sprs614.gifFigure 9-15 Placement Specifications

Table 9-19 Placement Specifications

NO. PARAMETER MIN MAX UNIT
1 X1(1)(2)(3) 1000 Mils
2 X2(1)(2) 600 Mils
3 Y Offset(1)(2)(3) 1500 Mils
4 DDR3 keepout region
5 Clearance from non-DDR3 signal to DDR3 keepout region(4)(5)(6) 4 w
(1) For dimension definitions, see Figure 9-15.
(2) Measurements from center of processor to center of DDR3 device.
(3) Minimizing X1 and Y improves timing margins.
(4) w is defined as the signal trace width.
(5) Non-DDR3 signals allowed within DDR3 keepout region provided they are separated from DDR3 routing layers by a ground plane.
(6) Note that DDR3 signals from one DDR3 controller are considered non-DDR3 to the other controller. In other words, keep the two DDR3 interfaces separated by this specification.

9.3.2.7 DDR3 Keepout Region

The region of the PCB used for DDR3 circuitry must be isolated from other signals. The DDR3 keepout region is defined for this purpose and is shown in Figure 9-16. The size of this region varies with the placement and DDR routing. Additional clearances required for the keepout region are shown in Table 9-19. Non-DDR3 signals should not be routed on the DDR signal layers within the DDR3 keepout region. Non-DDR3 signals may be routed in the region, provided they are routed on layers separated from the DDR signal layers by a ground layer. No breaks should be allowed in the reference ground layers in this region. In addition, the 1.5-V DDR3 power plane should cover the entire keepout region. Also note that the two DDR3 controller's signals should be separated from each other by the specification in Table 9-19, item 5.

AM3894 AM3892 ddr3_keepout_sprs614.gifFigure 9-16 DDR3 Keepout Region

9.3.2.8 Bulk Bypass Capacitors

Bulk bypass capacitors are required for moderate speed bypassing of the DDR3 and other circuitry. Table 9-20 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the DDR3 controllers and DDR3 devices. Additional bulk bypass capacitance may be needed for other circuitry. Also note that Table 9-20 is per DDR3 controller; thus, systems using both controllers have to meet the needs of Table 9-20 twice, once for each controller.

Table 9-20 Bulk Bypass Capacitors

NO. PARAMETER MIN MAX UNIT
1 DDR_1V5 bulk bypass capacitor count(1) 6 Devices
2 DDR_1V5 bulk bypass total capacitance 140 μF
(1) These devices should be placed near the devices they are bypassing, but preference should be given to the placement of the high-speed (HS) bypass capacitors and DDR3 signal routing.

9.3.2.9 High-Speed Bypass Capacitors

High-speed (HS) bypass capacitors are critical for proper DDR3 interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass capacitors, processor DDR power, and processor DDR ground connections. Table 9-21 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB. Generally speaking, it is good to:

  1. Fit as many HS bypass capacitors as possible.
  2. Minimize the distance from the bypass cap to the pins (balls) being bypassed.
  3. Use the smallest physical sized capacitors possible with the highest capacitance readily available.
  4. Connect the bypass capacitor pads to their vias using the widest traces possible and using the largest hole size via possible.
  5. Minimize via sharing. Note the limits on via sharing shown in Table 9-21.

Table 9-21 High-Speed Bypass Capacitors

NO. PARAMETER MIN TYP MAX UNIT
1 HS bypass capacitor package size(1) 201 402 10 Mils
2 Distance, HS bypass capacitor to processor being bypassed(2)(3)(4) 400 Mils
3 Processor DDR_1V5 HS bypass capacitor count 70 Devices
4 Processor DDR_1V5 HS bypass capacitor total capacitance 5 μF
5 Number of connection vias for each device power and ground ball(5) Vias
6 Trace length from device power and ground ball to connection via(2) 35 70 Mils
7 Distance, HS bypass capacitor to DDR device being bypassed(6) 150 Mils
8 DDR3 device HS bypass capacitor count(7) 12 Devices
9 DDR3 device HS bypass capacitor total capacitance(7) 0.85 μF
10 Number of connection vias for each HS capacitor(8)(9) 2 Vias
11 Trace length from bypass capacitor connect to connection via(2)(9) 35 100 Mils
12 Number of connection vias for each DDR3 device power and ground ball(10) 1 Vias
13 Trace length from DDR3 device power and ground ball to connection via(2)(8) 35 60 Mils
(1) LxW, 10-mil units, for example, a 0402 is a 40x20-mil surface-mount capacitor.
(2) Closer and shorter is better.
(3) Measured from the nearest processor power and ground ball to the center of the capacitor package.
(4) Three of these capacitors should be located underneath the processor, between the cluster of DDR_1V5 balls and ground balls, between the DDR interfaces on the package.
(5) See the Via Channel™ escape for the processor package.
(6) Measured from the DDR3 device power and ground ball to the center of the capacitor package.
(7) Per DDR3 device.
(8) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. No sharing of vias is permitted on the same side of the board.
(9) An HS bypass capacitor may share a via with a DDR device mounted on the same side of the PCB. A wide trace should be used for the connection and the length from the capacitor pad to the DDR device pad should be less than 150 mils.
(10) Up to a total of two pairs of DDR power and ground balls may share a via.

9.3.2.9.1 Return Current Bypass Capacitors

Use additional bypass capacitors if the return current reference plane changes due to DDR3 signals hopping from one signal layer to another. The bypass capacitor here provides a path for the return current to hop planes along with the signal. As many of these return current bypass capacitors should be used as possible. Since these are returns for signal current, the signal via size may be used for these capacitors.

9.3.2.10 Net Classes

Table 9-22 lists the clock net classes for the DDR3 interface. Table 9-23 lists the signal net classes, and associated clock net classes, for signals in the DDR3 interface. These net classes are used for the termination and routing rules that follow.

Table 9-22 Clock Net Class Definitions

CLOCK NET CLASS PROCESSOR PIN NAMES
CK DDR[x]_CLK[x] and DDR[x]_CLK[x]
DQS0 DDR[x]_DQS[0] and DDR[x]_DQS[0]
DQS1 DDR[x]_DQS[1] and DDR[x]_DQS[1]
DQS2(1) DDR[x]_DQS[2] and DDR[x]_DQS[2]
DQS3(1) DDR[x]_DQS[3] and DDR[x]_DQS[3]
(1) Only used on 32-bit wide DDR3 memory systems.

Table 9-23 Signal Net Class Definitions

SIGNAL NET CLASS ASSOCIATED CLOCK
NET CLASS
PROCESSOR PIN NAMES
ADDR_CTRL CK DDR[x]_BA[2:0], DDR[x]_A[14:0], DDR[x]_CS[x], DDR[x]_CAS, DDR[x]_RAS, DDR[x]_WE, DDR[x]_CKE, DDR[x]_ODT[x]
DQ0 DQS0 DDR[x]_D[7:0], DDR[x]_DQM[0]
DQ1 DQS1 DDR[x]_D[15:8], DDR[x]_DQM[1]
DQ2(1) DQS2 DDR[x]_D[23:16], DDR[x]_DQM[2]
DQ3(1) DQS3 DDR[x]_D[31:24], DDR[x]_DQM[3]
(1) Only used on 32-bit wide DDR3 memory systems.

9.3.2.11 DDR3 Signal Termination

Signal terminators are required for the CK and ADDR_CTRL net classes. The data lines are terminated by ODT and, thus, the PCB traces should be unterminated. Detailed termination specifications are covered in the routing rules in the following sections.

9.3.2.12 VREFSSTL_DDR Routing

VREFSSTL_DDR (VREF) is used as a reference by the input buffers of the DDR3 memories as well as the processor. VREF is intended to be half the DDR3 power supply voltage and is typically generated with the DDR3 1.5-V and VTT power supply. It should be routed as a nominal 20-mil wide trace with 0.1 µF bypass capacitors near each device connection. Narrowing of VREF is allowed to accommodate routing congestion.

9.3.2.13 VTT

Like VREF, the nominal value of the VTT supply is half the DDR3 supply voltage. Unlike VREF, VTT is expected to source and sink current, specifically the termination current for the ADDR_CTRL net class Thevinen terminators. VTT is needed at the end of the address bus and it should be routed as a power sub-plane. VTT should be bypassed near the terminator resistors.

9.3.2.14 CK and ADDR_CTRL Topologies and Routing Definition

The CK and ADDR_CTRL net classes are routed similarly and are length matched to minimize skew between them. CK is a bit more complicated because it runs at a higher transition rate and is differential. The following subsections show the topology and routing for various DDR3 configurations for CK and ADDR_CTRL. The figures in the following subsections define the terms for the routing specification detailed in Table 9-24.

9.3.2.14.1 Four DDR3 Devices

Four DDR3 devices are supported on the DDR EMIF consisting of four x8 DDR3 devices arranged as one bank (CS). These four devices may be mounted on a single side of the PCB, or may be mirrored in two pairs to save board space at a cost of increased routing complexity and parts on the backside of the PCB.

9.3.2.14.1.1 CK and ADDR_CTRL Topologies, Four DDR3 Devices

Figure 9-17 shows the topology of the CK net classes and Figure 9-18 shows the topology for the corresponding ADDR_CTRL net classes.

AM3894 AM3892 ck_topo_4_dev_sprs614.gifFigure 9-17 CK Topology for Four x8 DDR3 Devices
AM3894 AM3892 addr_ctrl_topo_4x8_sprs614.gifFigure 9-18 ADDR_CTRL Topology for Four x8 DDR3 Devices

9.3.2.14.1.2 CK and ADDR_CTRL Routing, Four DDR3 Devices

Figure 9-19 shows the CK routing for four DDR3 devices placed on the same side of the PCB. Figure 9-20 shows the corresponding ADDR_CTRL routing.

AM3894 AM3892 ck_routing_4_single_sprs614.gifFigure 9-19 CK Routing for Four Single-Side DDR3 Devices
AM3894 AM3892 addr_ctrl_routing_4_single_sprs614.gifFigure 9-20 ADDR_CTRL Routing for Four Single-Side DDR3 Devices

To save PCB space, the four DDR3 memories may be mounted as two mirrored pairs at a cost of increased routing and assembly complexity. Figure 9-21 and Figure 9-22 show the routing for CK and ADDR_CTRL, respectively, for four DDR3 devices mirrored in a two-pair configuration.

AM3894 AM3892 ck_routing_4_mirror_sprs614.gifFigure 9-21 CK Routing for Four Mirrored DDR3 Devices
AM3894 AM3892 addr_ctrl_routing_4_mirror_sprs614.gifFigure 9-22 ADDR_CTRL Routing for Four Mirrored DDR3 Devices

9.3.2.14.2 Two DDR3 Devices

Two DDR3 devices are supported on the DDR EMIF consisting of two x8 DDR3 devices arranged as one bank (CS), 16 bits wide, or two x16 DDR3 devices arranged as one bank (CS), 32 bits wide. These two devices may be mounted on a single side of the PCB, or may be mirrored in a pair to save board space at a cost of increased routing complexity and parts on the backside of the PCB.

9.3.2.14.2.1 CK and ADDR_CTRL Topologies, Two DDR3 Devices

Figure 9-23 shows the topology of the CK net classes and Figure 9-24 shows the topology for the corresponding ADDR_CTRL net classes.

AM3894 AM3892 ck_topo_2_dev_sprs614.gifFigure 9-23 CK Topology for Two DDR3 Devices
AM3894 AM3892 addr_ctrl_topo_2_sprs614.gifFigure 9-24 ADDR_CTRL Topology for Two DDR3 Devices

9.3.2.14.2.2 CK and ADDR_CTRL Routing, Two DDR3 Devices

Figure 9-25 shows the CK routing for two DDR3 devices placed on the same side of the PCB. Figure 9-26 shows the corresponding ADDR_CTRL routing.

AM3894 AM3892 ck_routing_2_single_sprs614.gifFigure 9-25 CK Routing for Two Single-Side DDR3 Devices
AM3894 AM3892 addr_ctrl_routing_2_single_sprs614.gifFigure 9-26 ADDR_CTRL Routing for Two Single-Side DDR3 Devices

To save PCB space, the two DDR3 memories may be mounted as a mirrored pair at a cost of increased routing and assembly complexity. Figure 9-27 and Figure 9-28 show the routing for CK and ADDR_CTRL, respectively, for two DDR3 devices mirrored in a single-pair configuration.

AM3894 AM3892 ck_routing_2_mirror_sprs614.gifFigure 9-27 CK Routing for Two Mirrored DDR3 Devices
AM3894 AM3892 addr_ctrl_routing_2_mirror_sprs614.gifFigure 9-28 ADDR_CTRL Routing for Two Mirrored DDR3 Devices

9.3.2.14.3 One DDR3 Device

A single DDR3 device is supported on the DDR EMIF consisting of one x16 DDR3 device arranged as one bank (CS), 16 bits wide.

9.3.2.14.3.1 CK and ADDR_CTRL Topologies, One DDR3 Device

Figure 9-29 shows the topology of the CK net classes and Figure 9-30 shows the topology for the corresponding ADDR_CTRL net classes.

AM3894 AM3892 ck_topo_single_dev_sprs614.gifFigure 9-29 CK Topology for One DDR3 Device
AM3894 AM3892 addr_ctrl_topo_single_sprs614.gifFigure 9-30 ADDR_CTRL Topology for One DDR3 Device

9.3.2.14.3.2 CK and ADDR_CTRL Routing, One DDR3 Device

Figure 9-31 shows the CK routing for one DDR3 device placed on the same side of the PCB. Figure 9-32 shows the corresponding ADDR_CTRL routing.

AM3894 AM3892 ck_routing_single_sprs614.gifFigure 9-31 CK Routing for One DDR3 Device
AM3894 AM3892 addr_ctrl_routing_single_sprs614.gifFigure 9-32 ADDR_CTRL Routing for One DDR3 Device

9.3.2.15 Data Topologies and Routing Definition

No matter the number of DDR3 devices used, the data line topology is always point to point, so its definition is simple.

9.3.2.15.1 DQS, DQ and DM Topologies, Any Number of Allowed DDR3 Devices

DQS lines are point-to-point differential, and DQ and DM lines are point-to-point singled ended. Figure 9-33 and Figure 9-34 show these topologies.

AM3894 AM3892 dqs_topo_sprs614.gifFigure 9-33 DQS Topology
AM3894 AM3892 dq_dm_topo_sprs614.gifFigure 9-34 DQ/DM Topology

9.3.2.15.2 DQS, DQ and DM Routing, Any Number of Allowed DDR3 Devices

Figure 9-35 and Figure 9-36 show the DQS, DQ and DM routing.

AM3894 AM3892 dqs_routing_sprs614.gifFigure 9-35 DQS Routing With Any Number of Allowed DDR3 Devices
AM3894 AM3892 dq_dm_routing_sprs614.gifFigure 9-36 DQ and DM Routing With Any Number of Allowed DDR3 Devices

9.3.2.16 Routing Specification

9.3.2.16.1 CK and ADDR_CTRL Routing Specification

Skew within the CK and ADDR_CTRL net classes directly reduces setup and hold margin and, thus, this skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces up to the length of the longest net in the net class and its associated clock. A metric to establish this maximum length is Manhattan distance. The Manhattan distance between two points on a PCB is the length between the points when connecting them only with horizontal or vertical segments. A reasonable trace route length is to within a percentage of its Manhattan distance. CACLM is defined as Clock Address Control Longest Manhattan distance.

Given the clock and address pin locations on the processor and the DDR3 memories, the maximum possible Manhattan distance can be determined given the placement. Figure 9-37 and Figure 9-38 show this distance for four loads and two loads, respectively. It is from this distance that the specifications on the lengths of the transmission lines for the address bus are determined. CACLM is determined similarly for other address bus configurations; that is, it is based on the longest net of the CK and ADDR_CTRL net class. For CK and ADDR_CTRL routing, these specifications are contained in Table 9-24.

AM3894 AM3892 caclm_4_addr_sprs614.gif
A. It is very likely that the longest CK and ADDR_CTRL Manhattan distance will be for Address Input 8 (A8) on the DDR3 memories. CACLM is based on the longest Manhattan distance due to the device placement. Verify the net class that satisfies this criteria and use as the baseline for CK and ADDR_CTRL skew matching and length control.

The length of shorter CK and ADDR_CTRL stubs as well as the length of the terminator stub are not included in this length caculation. Non-included lengths are grayed out in the figure.

Assuming A8 is the longest, CALM = CACLMY + CACLMX + 300 mils.
The extra 300 mils allows for routing down lower than the DDR3 memories and returning up to reach A8.
Figure 9-37 CACLM for Four Address Loads on One Side of PCB
AM3894 AM3892 caclm_2_addr_sprs614.gif
A. It is very likely that the longest CK and ADDR_CTRL Manhattan distance will be for Address Input 8 (A8) on the DDR3 memories. CACLM is based on the longest Manhattan distance due to the device placement. Verify the net class that satisfies this criteria and use as the baseline for CK and ADDR_CTRL skew matching and length control.

The length of shorter CK and ADDR_CTRL stubs as well as the length of the terminator stub are not included in this length caculation. Non-included lengths are grayed out in the figure.

Assuming A8 is the longest, CALM = CACLMY + CACLMX + 300 mils.
The extra 300 mils allows for routing down lower than the DDR3 memories and returning up to reach A8.
Figure 9-38 CACLM for Two Address Loads on One Side of PCB

Table 9-24 CK and ADDR_CTRL Routing Specification(1)(2)

NO. PARAMETER MIN TYP MAX UNIT
1 A1+A2 length 2500 mils
2 A1+A2 skew 25 mils
3 A3 length 660 mils
4 A3 skew(3) 25 mils
5 A3 skew(4) 125 mils
6 A4 length 660 mils
7 A4 skew 25 mils
8 AS length 100 mils
9 AS skew 100 mils
10 AS+ and AS- length 70 mils
11 AS+ and AS- skew 5 mils
12 AT length(5) 500 mils
13 AT skew(6) 100 mils
14 AT skew(7) 5 mils
15 CK and ADDR_CTRL nominal trace length(8) CACLM-50 CACLM CACLM+50 mils
16 Center-to-center CK to other DDR3 trace spacing(9) 4w
17 Center-to-center ADDR_CTRL to other DDR3 trace spacing(9)(10) 4w
18 Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(9) 3w
19 CK center-to-center spacing(11)
20 CK spacing to other net(9) 4w
21 Rcp(12) Zo-1 Zo Zo+ Ω
22 Rtt(12)(13) Zo-5 Zo Zo+5 Ω
(1) The use of vias should be minimized.
(2) Additional bypass capacitors are required when using the DDR_1V5 plane as the reference plane to allow the return current to jump between the DDR_1V5 plane and the ground plane when the net class swtiches layers at a via.
(3) Non-mirrored configuration (all DDR3 memories on same side of PCB).
(4) Mirrored configuration (one DDR3 device on top of the board and one DDR3 device on the bottom).
(5) While this length can be increased for convienience, its length should be minimized.
(6) ADDR_CTRL net class only (not CK net class). Minimizing this skew is recommended, but not required.
(7) CK net class only.
(8) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes + 300 mils. For definition, see Section 9.3.2.16.1, Figure 9-37, and Figure 9-38.
(9) Center-to-center spacing is allowed to fall to minimum (w) for up to 1250 mils of routed length.
(10) The ADDR_CTRL net class of the other DDR EMIF is considered other DDR3 trace spacing.
(11) CK spacing set to ensure proper differential impedance.
(12) Source termination (series resistor at driver) is specifically not allowed.
(13) Termination values should be uniform across the net class.

9.3.2.16.2 DQS and DQ Routing Specification

Skew within the DQS, DQ and DM net classes directly reduces setup and hold margin and thus this skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces up to the length of the longest net in the net class and its associated clock. As with CK and ADDR_CTRL, a reasonable trace route length is to within a percentage of its Manhattan distance. DQLMn is defined as DQ Longest Manhattan distance n, where n is the byte number. For a 32-bit interface, there are four DQLMs, DQLM0-DQLM3. Likewise, for a 16-bit interface, there are two DQLMs, DQLM0-DQLM1.

NOTE

It is not required, nor is it recommended, to match the lengths across all bytes. Length matching is only required within each byte.

Given the DQS, DQ and DM pin locations on the processor and the DDR3 memories, the maximum possible Manhattan distance can be determined given the placement. Figure 9-39 shows this distance for four loads. It is from this distance that the specifications on the lengths of the transmission lines for the data bus are determined. For DQS, DQ and DM routing, these specifications are contained in Table 9-25.

AM3894 AM3892 dqlm_sprs614.gif
There are four DQLMs, one for each byte (32-bit interface). Each DQLM is the longest Manhattan distance of the byte; therefore:
DQLM0 = DQLMX0 + DQLMY0
DQLM1 = DQLMX1 + DQLMY1
DQLM2 = DQLMX2 + DQLMY2
DQLM3 = DQLMX3 + DQLMY3
Figure 9-39 DQLM for Any Number of Allowed DDR3 Devices

Table 9-25 Data Routing Specification(1)

NO. PARAMETER MIN TYP MAX UNIT
1 DB0 nominal length(2)(3) DQLM0 mils
2 DB1 nominal length(2)(4) DQLM1 mils
3 DB2 nominal length(2)(5) DQLM2 mils
4 DB3 nominal length(2)(6) DQLM3 mils
5 DBn skew(7) 25 mils
6 DQSn+ to DQSn- skew 5 mils
7 DQSn to DBn skew(7)(8) 25 mils
8 Center-to-center DBn to other DDR3 trace spacing(9)(10) 4w
9 Center-to-center DBn to other DBn trace spacing(9)(11) 3w
10 DQSn center-to-center spacing(12)
11 DQSn center-to-center spacing to other net(9) 4w
(1) External termination disallowed. Data termination should use built-in ODT functionality.
(2) DQLMn is the longest Manhattan distance of a byte. For definition, see Section 9.3.2.16.2 and Figure 9-39.
(3) DQLM0 is the longest Manhattan length for the net classes of Byte 0.
(4) DQLM1 is the longest Manhattan length for the net classes of Byte 1.
(5) DQLM2 is the longest Manhattan length for the net classes of Byte 2.
(6) DQLM3 is the longest Manhattan length for the net slasses of Byte 3.
(7) Length matching is only done within a byte. Length matching across bytes is neither required nor recommended.
(8) Each DQS pair is length matched to its associated byte.
(9) Center-to-center spacing is allowed to fall to minimum (w) for up to 1250 mils of routed length.
(10) Other DDR3 trace spacing means other DDR3 net classes not within the byte.
(11) This applies to spacing within the net classes of a byte.
(12) DQS pair spacing is set to ensure proper differential impedance.

9.3.3 DDR2 and DDR3 Memory Controller Register Descriptions

Table 9-26 DDR2 and DDR3 Memory Controller Registers

DDR0 HEX ADDRESS DDR1 HEX ADDRESS ACRONYM REGISTER NAME
0x4C00 0004 0x4D00 0004 SDRSTAT SDRAM Status
0x4C00 0008 0x4D00 0008 SDRCR SDRAM Config
0x4C00 000C 0x4D00 000C SDRCR2 SDRAM Config 2
0x4C00 0010 0x4D00 0010 SDRRCR SDRAM Refresh Control
0x4C00 0014 0x4D00 0014 SDRRCSR SDRAM Refresh Control Shadow
0x4C00 0018 0x4D00 0018 SDRTIM1 SDRAM Timing 1
0x4C00 001C 0x4D00 001C SDRTIM1SR SDRAM Timing 1 Shadow
0x4C00 0020 0x4D00 0020 SDRTIM2 SDRAM Timing 2
0x4C00 0024 0x4D00 0024 SDRTIM2SR SDRAM Timing 2 Shadow
0x4C00 0028 0x4D00 0028 SDRTIM3 SDRAM Timing 3
0x4C00 002C 0x4D00 002C SDRTIM3SR SDRAM Timing 3 Shadow
0x4C00 0038 0x4D00 0038 PMCR Power Management Control
0x4C00 003C 0x4D00 003C PMCSR Power Management Control Shadow
0x4C00 0054 0x4D00 0054 PBBPR Peripheral Bus Burst Priority
0x4C00 00A0 0x4D00 00A0 EOI End of Interrupt
0x4C00 00A4 0x4D00 00A4 SOIRSR System OCP Interrupt Raw Status
0x4C00 00AC 0x4D00 00AC SOISR System OCP Interrupt Status
0x4C00 00B4 0x4D00 00B4 SOIESR System OCP Interrupt Enable Set
0x4C00 00BC 0x4D00 00BC SOIECR System OCP Interrupt Enable Clear
0x4C00 00C8 0x4D00 00C8 ZQCR SDRAM output Impedance Calibration Config
0x4C00 00DC 0x4D00 00DC RWLCR Read-Write Leveling Control
0x4C00 00E4 0x4D00 00E4 DDRPHYCR DDR PHY Control
0x4C00 00E8 0x4D00 00E8 DDRPHYCSR DDR PHY Control Shadow

9.3.4 DDR2 and DDR3 PHY Register Descriptions

Table 9-27 DDR2 and DDR3 PHY Registers

DDR0 HEX ADDRESS DDR1 HEX ADDRESS ACRONYM REGISTER NAME
0x4819 800C 0x4819 A00C CMD0_IO_CONFIG_I_0 Command 0 Address and Command Pad Configuration
0x4819 8010 0x4819 A010 CMD0_IO_CONFIG_I_CLK_0 Command 0 Clock Pad Configuration
0x4819 8014 0x4819 A014 CMD0_IO_CONFIG_SR_0 Command 0 Address and Command Slew Rate Configuration
0x4819 8018 0x4819 A018 CMD0_IO_CONFIG_SR_CLK_0 Command 0 Clock Pad Slew Rate Configuration
0x4819 801C 0x4819 A01C CMD0_REG_PHY_CTRL_SLAVE_RATIO_0 Command 0 Address and Command Slave Ratio
0x4819 802C 0x4819 A02C CMD0_REG_PHY_INVERT_CLKOUT_0 Command 0 Invert Clockout Selection
0x4819 8040 0x4819 A040 CMD1_IO_CONFIG_I_0 Command 1 Address and Command Pad Configuration
0x4819 8044 0x4819 A044 CMD1_IO_CONFIG_I_CLK_0 Command 1 Clock Pad Configuration
0x4819 8048 0x4819 A048 CMD1_IO_CONFIG_SR_0 Command 1 Address and Command Slew Rate Configuration
0x4819 804C 0x4819 A04C CMD1_IO_CONFIG_SR_CLK_0 Command 1 Clock Pad Slew Rate Configuration
0x4819 8050 0x4819 A050 CMD1_REG_PHY_CTRL_SLAVE_RATIO_0 Command 1 Address and Command Slave Ratio
0x4819 8060 0x4819 A060 CMD1_REG_PHY_INVERT_CLKOUT_0 Command 1 Invert Clockout Selection
0x4819 8074 0x4819 A074 CMD2_IO_CONFIG_I_0 Command 2 Address and Command Pad Configuration
0x4819 8078 0x4819 A078 CMD2_IO_CONFIG_I_CLK_0 Command 2 Clock Pad Configuration
0x4819 807C 0x4819 A07C CMD2_IO_CONFIG_SR_0 Command 2 Address and Command Slew Rate Configuration
0x4819 8080 0x4819 A080 CMD2_IO_CONFIG_SR_CLK_0 Command 2 Clock Pad Slew Rate Configuration
0x4819 8084 0x4819 A084 CMD2_REG_PHY_CTRL_SLAVE_RATIO_0 Command 2 Address and Command Slave Ratio
0x4819 8094 0x4819 A094 CMD2_REG_PHY_INVERT_CLKOUT_0 Command 2 Invert Clockout Selection
0x4819 80A8 0x4819 A0A8 DATA0_IO_CONFIG_I_0 Data Macro 0 Data Pad Configuration
0x4819 80AC 0x4819 A0AC DATA0_IO_CONFIG_I_CLK_0 Data Macro 0 Data Strobe Pad Configuration
0x4819 80B0 0x4819 A0B0 DATA0_IO_CONFIG_SR_0 Data Macro 0 Data Slew Rate Configuration
0x4819 80B4 0x4819 A0B4 DATA0_IO_CONFIG_SR_CLK_0 Data Macro 0 Data Strobe Slew Rate Configuration
0x4819 80C8 0x4819 A0C8 DATA0_REG_PHY_RD_DQS_SLAVE_RATIO_0 Data Macro 0 Read DQS Slave Ratio
0x4819 80DC 0x4819 A0DC DATA0_REG_PHY_WR_DQS_SLAVE_RATIO_0 Data Macro 0 Write DQS Slave Ratio
0x4819 80F0 0x4819 A0F0 DATA0_REG_PHY_WRLVL_INIT_RATIO_0 Data Macro 0 Write Leveling Init Ratio
0x4819 80F8 0x4819 A0F8 DATA0_REG_PHY_WRLVL_INIT_MODE_0 Data Macro 0 Write Leveling Init Mode Ratio Selection
0x4819 80FC 0x4819 A0FC DATA0_REG_PHY_GATELVL_INIT_RATIO_0 Data Macro 0 DQS Gate Training Init Ratio
0x4819 8104 0x4819 A104 DATA0_REG_PHY_GATELVL_INIT_MODE_0 Data Macro 0 DQS Gate Training Init Mode Ratio Selection
0x4819 8108 0x4819 A108 DATA0_REG_PHY_FIFO_WE_SLAVE_RATIO_0 Data Macro 0 DQS Gate Slave Ratio
0x4819 8120 0x4819 A120 DATA0_REG_PHY_WR_DATA_SLAVE_RATIO_0 Data Macro 0 Write Data Slave Ratio
0x4819 8134 0x4819 A134 DATA0_REG_PHY_USE_RANK0_DELAYS Data Macro 0 Delay Selection
0x4819 814C 0x4819 A14C DATA1_IO_CONFIG_I_0 Data Macro 1 Data Pad Configuration
0x4819 8150 0x4819 A150 DATA1_IO_CONFIG_I_CLK_0 Data Macro 1 Data Strobe Pad Configuration
0x4819 8154 0x4819 A154 DATA1_IO_CONFIG_SR_0 Data Macro 1 Data Slew Rate Configuration
0x4819 8158 0x4819 A158 DATA1_IO_CONFIG_SR_CLK_0 Data Macro 1 Data Strobe Slew Rate Configuration
0x4819 816C 0x4819 A16C DATA1_REG_PHY_RD_DQS_SLAVE_RATIO_0 Data Macro 1 Read DQS Slave Ratio
0x4819 8180 0x4819 A180 DATA1_REG_PHY_WR_DQS_SLAVE_RATIO_0 Data Macro 1 Write DQS Slave Ratio
0x4819 8194 0x4819 A194 DATA1_REG_PHY_WRLVL_INIT_RATIO_0 Data Macro 1 Write Leveling Init Ratio
0x4819 819C 0x4819 A19C DATA1_REG_PHY_WRLVL_INIT_MODE_0 Data Macro 1 Write Leveling Init Mode Ratio Selection
0x4819 81A0 0x4819 A1A0 DATA1_REG_PHY_GATELVL_INIT_RATIO_0 Data Macro 1 DQS Gate Training Init Ratio
0x4819 81A8 0x4819 A1A8 DATA1_REG_PHY_GATELVL_INIT_MODE_0 Data Macro 1 DQS Gate Training Init Mode Ratio Selection
0x4819 81AC 0x4819 A1AC DATA1_REG_PHY_FIFO_WE_SLAVE_RATIO_0 Data Macro 1 DQS Gate Slave Ratio
0x4819 81C4 0x4819 A1C4 DATA1_REG_PHY_WR_DATA_SLAVE_RATIO_0 Data Macro 1 Write Data Slave Ratio
0x4819 81D8 0x4819 A1D8 DATA1_REG_PHY_USE_RANK0_DELAYS Data Macro 1 Delay Selection
0x4819 81F0 0x4819 A1F0 DATA2_IO_CONFIG_I_0 Data Macro 2 Data Pad Configuration
0x4819 81F4 0x4819 A1F4 DATA2_IO_CONFIG_I_CLK_0 Data Macro 2 Data Strobe Pad Configuration
0x4819 81F8 0x4819 A1F8 DATA2_IO_CONFIG_SR_0 Data Macro 2 Data Slew Rate Configuration
0x4819 81FC 0x4819 A1FC DATA2_IO_CONFIG_SR_CLK_0 Data Macro 2 Data Strobe Slew Rate Configuration
0x4819 8210 0x4819 A210 DATA2_REG_PHY_RD_DQS_SLAVE_RATIO_0 Data Macro 2 Read DQS Slave Ratio
0x4819 8224 0x4819 A224 DATA2_REG_PHY_WR_DQS_SLAVE_RATIO_0 Data Macro 2 Write DQS Slave Ratio
0x4819 8238 0x4819 A238 DATA2_REG_PHY_WRLVL_INIT_RATIO_0 Data Macro 2 Write Leveling Init Ratio
0x4819 8240 0x4819 A240 DATA2_REG_PHY_WRLVL_INIT_MODE_0 Data Macro 2 Write Leveling Init Mode Ratio Selection
0x4819 8244 0x4819 A244 DATA2_REG_PHY_GATELVL_INIT_RATIO_0 Data Macro 2 DQS Gate Training Init Ratio
0x4819 824C 0x4819 A24C DATA2_REG_PHY_GATELVL_INIT_MODE_0 Data Macro 2 DQS Gate Training Init Mode Ratio Selection
0x4819 8250 0x4819 A250 DATA2_REG_PHY_FIFO_WE_SLAVE_RATIO_0 Data Macro 2 DQS Gate Slave Ratio
0x4819 8268 0x4819 A268 DATA2_REG_PHY_WR_DATA_SLAVE_RATIO_0 Data Macro 2 Write Data Slave Ratio
0x4819 827C 0x4819 A27C DATA2_REG_PHY_USE_RANK0_DELAYS Data Macro 2 Delay Selection
0x4819 8294 0x4819 A294 DATA3_IO_CONFIG_I_0 Data Macro 3 Data Pad Configuration
0x4819 8298 0x4819 A298 DATA3_IO_CONFIG_I_CLK_0 Data Macro 3 Data Strobe Pad Configuration
0x4819 829C 0x4819 A29C DATA3_IO_CONFIG_SR_0 Data Macro 3 Data Slew Rate Configuration
0x4819 82A0 0x4819 A2A0 DATA3_IO_CONFIG_SR_CLK_0 Data Macro 3 Data Strobe Slew Rate Configuration
0x4819 82B4 0x4819 A2B4 DATA3_REG_PHY_RD_DQS_SLAVE_RATIO_0 Data Macro 3 Read DQS Slave Ratio
0x4819 82C8 0x4819 A2C8 DATA3_REG_PHY_WR_DQS_SLAVE_RATIO_0 Data Macro 3 Write DQS Slave Ratio
0x4819 82DC 0x4819 A2DC DATA3_REG_PHY_WRLVL_INIT_RATIO_0 Data Macro 3 Write Leveling Init Ratio
0x4819 82E4 0x4819 A2E4 DATA3_REG_PHY_WRLVL_INIT_MODE_0 Data Macro 3 Write Leveling Init Mode Ratio Selection
0x4819 82E8 0x4819 A2E8 DATA3_REG_PHY_GATELVL_INIT_RATIO_0 Data Macro 3 DQS Gate Training Init Ratio
0x4819 82F0 0x4819 A2F0 DATA3_REG_PHY_GATELVL_INIT_MODE_0 Data Macro 3 DQS Gate Training Init Mode Ratio Selection
0x4819 82F4 0x4819 A2F4 DATA3_REG_PHY_FIFO_WE_SLAVE_RATIO_0 Data Macro 3 DQS Gate Slave Ratio
0x4819 830C 0x4819 A30C DATA3_REG_PHY_WR_DATA_SLAVE_RATIO_0 Data Macro 3 Write Data Slave Ratio
0x4819 8320 0x4819 A320 DATA3_REG_PHY_USE_RANK0_DELAYS Data Macro 3 Delay Selection
0x4819 8358 0x4819 A358 DDR_VTP_CTRL_0 DDR VTP Control

9.3.5 DDR2 and DDR3 Memory Controller Electrical Data and Timing

Section 9.3.1, DDR2 Routing Specifications and Section 9.3.2, DDR3 Routing Specifications specify a complete DDR2 and DDR3 interface solution for the device. TI has performed the simulation and system characterization to ensure all DDR2 and DDR3 interface timings in this solution are met.

TI only supports board designs that follow the specifications outlined in the DDR2 Routing Specifications and DDR3 Routing Specifications sections of this data sheet.

9.4 Emulation Features and Capability

9.4.1 Advanced Event Triggering (AET)

The device supports Advanced Event Triggering (AET). This capability can be used to debug complex problems as well as understand performance characteristics of user applications. AET provides the following capabilities:

  • Hardware Program Breakpoints: specify addresses or address ranges that can generate events such as halting the processor or triggering the trace capture.
  • Data Watchpoints: specify data variable addresses, address ranges, or data values that can generate events such as halting the processor or triggering the trace capture.
  • Counters: count the occurrence of an event or cycles for performance monitoring.
  • State Sequencing: allows combinations of hardware program breakpoints and data watchpoints to precisely generate events for complex sequences.

For more information on AET, see the following documents:

  • Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs application report (literature number SPRA753)
  • Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor Systems application report (literature number SPRA387)

9.4.2 Trace

The device supports Trace at the Cortex™-A8 and System levels. Trace is a debug technology that provides a detailed, historical account of application code execution, timing, and data accesses. Trace collects, compresses, and exports debug information for analysis. The debug information can be exported to the Embedded Trace Buffer (ETB), or to the 5-pin Trace Interface (system trace only). Trace works in real-time and does not impact the execution of the system.

For more information on board design guidelines for Trace Advanced Emulation, see the Emulation and Trace Headers Technical Reference Manual (literature number SPRU655).

9.4.3 IEEE 1149.1 JTAG

The JTAG (IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture) interface is used for BSDL testing and emulation of the device. The TRST pin only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. For maximum reliability, the device includes an internal pulldown (IPD) on the TRST pin to ensure that TRST is always asserted upon power up and the device's internal emulation logic is always properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally drive TRST high before attempting any emulation or boundary-scan operations.

The main JTAG features include:

  • 32KB embedded trace buffer (ETB)
  • 5-pin system trace interface for debug
  • Supports Advanced Event Triggering (AET)
  • All processors can be emulated via JTAG ports
  • All functions on EMU pins of the device:
    • EMU[1:0] - cross-triggering, boot mode (WIR), STM trace
    • EMU[4:2] - STM trace only (single direction)
    • EMU[2] - only valid pin to use as clock

9.4.3.1 JTAG ID (JTAGID) Register Description

Table 9-28 JTAG ID Register(1)

HEX ADDRESS ACRONYM REGISTER NAME
0x4814 0600 JTAGID JTAG Identification Register(2)
(1) IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
(2) Read-only. Provides the device 32-bit JTAG ID.

The JTAG ID register is a read-only register that identifies to the customer the JTAG device ID. For this device, the JTAG ID register resides at address location 0x4814 0600. The register hex value for the device depends on the silicon revision being used. For more information, see the AM389x Sitara ARM ProcessorsSilicon Errata (literature number SPRZ327). For the actual register bit names and their associated bit field descriptions, see Figure 9-40 and Table 9-29.

31 28 27 12 11 1 0
VARIANT (4-bit) PART NUMBER (16-bit) MANUFACTURER (11-bit) LSB
R-x R-1011 1000 0001 1110 R-0000 0010 111 R-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure 9-40 JTAG ID Register Description - 0x4814 0600

Table 9-29 JTAG ID Register Selection Bit Descriptions

Bit Field Description
31:28 VARIANT Variant (4-bit) value. Device value: The value of this field depends on the silicon revision being used. For more information, see the AM389x Sitara ARM ProcessorsSilicon Errata (literature number SPRZ327).
27:12 PART NUMBER Part Number (16-bit) value. Device value: 0xB81E
11:1 MANUFACTURER Manufacturer (11-bit) value. Device value: 0x017
0 LSB LSB. This bit is read as a 1 for this device.

9.4.3.2 JTAG Electrical Data and Timing

Table 9-30 Timing Requirements for IEEE 1149.1 JTAG

(see Figure 9-41)
NO. MIN MAX UNIT
1 tc(TCK) Cycle time, TCK 51.15 ns
1a tw(TCKH) Pulse duration, TCK high (40% of tc) 20.46 ns
1b tw(TCKL) Pulse duration, TCK low (40% of tc) 20.46 ns
3 tsu(TDI-TCK) Input setup time, TDI valid to TCK high (20% of (tc * 0.5)) 5.115 ns
3 tsu(TMS-TCK) Input setup time, TMS valid to TCK high (20% of (tc * 0.5)) 5.115 ns
4 th(TCK-TDI) Input hold time, TDI valid from TCK high 10 ns
th(TCK-TMS) Input hold time, TMS valid from TCK high 10 ns

Table 9-31 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG

(see Figure 9-41)
NO. PARAMETER MIN MAX UNIT
2 td(TCKL-TDOV) Delay time, TCK low to TDO valid 0 23.575(1) ns
(1) (0.5 * tc) - 2
AM3894 AM3892 td_jtag_sprs614.gifFigure 9-41 JTAG Timing

Table 9-32 Timing Requirements for IEEE 1149.1 JTAG With RTCK

(see Figure 9-41)
NO. MIN MAX UNIT
1 tc(TCK) Cycle time, TCK 51.15 ns
1a tw(TCKH) Pulse duration, TCK high (40% of tc) 20.46 ns
1b tw(TCKL) Pulse duration, TCK low (40% of tc) 20.46 ns
3 tsu(TDI-TCK) Input setup time, TDI valid to TCK high (20% of (tc * 0.5)) 5.115 ns
3 tsu(TMS-TCK) Input setup time, TMS valid to TCK high (20% of (tc * 0.5)) 5.115 ns
4 th(TCK-TDI) Input hold time, TDI valid from TCK high 10 ns
th(TCK-TMS) Input hold time, TMS valid from TCK high 10 ns

Table 9-33 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG With RTCK

(see Figure 9-42)
NO. PARAMETER MIN MAX UNIT
5 td(TCK-RTCK) Delay time, TCK to RTCK with no selected subpaths (that is, ICEPick module is the only tap selected - when the ARM is in the scan chain, the delay time is a function of the ARM functional clock.) 0 21 ns
6 tc(RTCK) Cycle time, RTCK 51.15 ns
7 tw(RTCKH) Pulse duration, RTCK high (40% of tc) 20.46 ns
8 tw(RTCKL) Pulse duration, RTCK low (40% of tc) 20.46 ns
AM3894 AM3892 td_jtag_rtck_sprs614.gifFigure 9-42 JTAG With RTCK Timing

9.4.4 IEEE 1149.7 cJTAG

Besides the standard (legacy) JTAG mode of operation, the target debug interface can also be switched to a compressed JTAG (cJTAG) mode of operation, commonly referred to as IEEE1149.7 standard. An IEEE1149.7 adapter module runs a 2-pin communication protocol on top of an IEEE1149.1 JTAG TAP. The debug-IP logic serializes the IEEE1149.1 transactions, using a variety of compression formats, to reduce the number of pins needed to implement a JTAG debug port. This device implements only a subset of the IEEE1149.7 protocol; it supports Class 0 and Class 1 operation. On this device the cJTAG ID[7:0] is tied to 0x00.

NOTE

The default setting of the scan port is IEEE 1149.1. A cJTAG emulator connected only to TCLK and TMS can re-configure the port to cJTAG by scanning in a special command sequence. For the scan sequence required to switch modes, see the IEEE1149.7 specification.

9.5 Enhanced Direct Memory Access (EDMA) Controller

The EDMA controller handles all data transfers between memories and the device slave peripherals on the device. These data transfers include cache servicing, non-cacheable memory accesses, user-programmed data transfers, and host accesses.

9.5.1 EDMA Channel Synchronization Events

The EDMA channel controller supports up to 64 channels that service peripherals and memory. Each EDMA channel is mapped to a default EDMA synchronization event as shown in Table 9-34. By default, each event uses the parameter entry that matches its event number. However, because the device includes a channel mapping feature, each event may be mapped to any of 512 parameter table entries. For more detailed information on the EDMA module and how EDMA events are enabled, captured, processed, linked, chained, and cleared, see the EDMA chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

Table 9-34 EDMA Default Synchronization Events

EVENT NUMBER DEFAULT EVENT NAME DEFAULT EVENT DESCRIPTION
0 - 7 - Unused
8 AXEVT0 McASP0 Transmit
9 AREVT0 McASP0 Receive
10 AXEVT1 McASP1 Transmit
11 AREVT1 McASP1 Receive
12 AXEVT2 McASP2 Transmit
13 AREVT2 McASP2 Receive
14 BXEVT McBSP Transmit
15 BREVT McBSP Receive
16 SPIXEVT0 SPI0 Transmit 0
17 SPIREVT0 SPI0 Receive 0
18 SPIXEVT1 SPI0 Transmit 1
19 SPIREVT1 SPI0 Receive 1
20 SPIXEVT2 SPI0 Transmit 2
21 SPIREVT2 SPI0 Receive 2
22 SPIXEVT3 SPI0 Transmit 3
23 SPIREVT3 SPI0 Receive 3
24 SDTXEVT SD0 Transmit
25 SDRXEVT SD0 Receive
26 UTXEVT0 UART0 Transmit
27 URXEVT0 UART0 Receive
28 UTXEVT1 UART1 Transmit
29 URXEVT1 UART1 Receive
30 UTXEVT2 UART2 Transmit
31 URXEVT2 UART2 Receive
32 - 47 - Unused
48 TINT4 TIMER4
49 TINT5 TIMER5
50 TINT6 TIMER6
51 TINT7 TIMER7
52 GPMCEVT GPMC
53 HDMIEVT HDMI
54 - 57 - Unused
58 I2CTXEVT0 I2C0 Transmit
59 I2CRXEVT0 I2C0 Receive
60 I2CTXEVT1 I2C1 Transmit
61 I2CRXEVT1 I2C1 Receive
62 - 63 - Unused

9.5.2 EDMA Peripheral Register Descriptions

Table 9-35 EDMA Channel Controller (EDMA TPCC) Control Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x4900 0000 PID Peripheral Identification
0x4900 0004 CCCFG EDMA3CC Configuration
0x4900 0100 - 0x4900 01FC DCHMAP0-63 DMA Channel 0-63 Mappings
0x4900 0200 QCHMAP0 QDMA Channel 0 Mapping
0x4900 0204 QCHMAP1 QDMA Channel 1 Mapping
0x4900 0208 QCHMAP2 QDMA Channel 2 Mapping
0x4900 020C QCHMAP3 QDMA Channel 3 Mapping
0x4900 0210 QCHMAP4 QDMA Channel 4 Mapping
0x4900 0214 QCHMAP5 QDMA Channel 5 Mapping
0x4900 0218 QCHMAP6 QDMA Channel 6 Mapping
0x4900 021C QCHMAP7 QDMA Channel 7 Mapping
0x4900 0240 DMAQNUM0 DMA Queue Number 0
0x4900 0244 DMAQNUM1 DMA Queue Number 1
0x4900 0248 DMAQNUM2 DMA Queue Number 2
0x4900 024C DMAQNUM3 DMA Queue Number 3
0x4900 0250 DMAQNUM4 DMA Queue Number 4
0x4900 0254 DMAQNUM5 DMA Queue Number 5
0x4900 0258 DMAQNUM6 DMA Queue Number 6
0x4900 025C DMAQNUM7 DMA Queue Number 7
0x4900 0260 QDMAQNUM QDMA Queue Number
0x4900 0284 QUEPRI Queue Priority
0x4900 0300 EMR Event Missed
0x4900 0304 EMRH Event Missed High
0x4900 0308 EMCR Event Missed Clear
0x4900 030C EMCRH Event Missed Clear High
0x4900 0310 QEMR QDMA Event Missed
0x4900 0314 QEMCR QDMA Event Missed Clear
0x4900 0318 CCERR EDMA3CC Error
0x4900 031C CCERRCLR EDMA3CC Error Clear
0x4900 0320 EEVAL Error Evaluate
0x4900 0340 DRAE0 DMA Region Access Enable for Region 0
0x4900 0344 DRAEH0 DMA Region Access Enable High for Region 0
0x4900 0348 DRAE1 DMA Region Access Enable for Region 1
0x4900 034C DRAEH1 DMA Region Access Enable High for Region 1
0x4900 0350 DRAE2 DMA Region Access Enable for Region 2
0x4900 0354 DRAEH2 DMA Region Access Enable High for Region 2
0x4900 0358 DRAE3 DMA Region Access Enable for Region 3
0x4900 035C DRAEH3 DMA Region Access Enable High for Region 3
0x4900 0360 DRAE4 DMA Region Access Enable for Region 4
0x4900 0364 DRAEH4 DMA Region Access Enable High for Region 4
0x4900 0368 DRAE5 DMA Region Access Enable for Region 5
0x4900 036C DRAEH5 DMA Region Access Enable High for Region 5
0x4900 0370 DRAE6 DMA Region Access Enable for Region 6
0x4900 0374 DRAEH6 DMA Region Access Enable High for Region 6
0x4900 0378 DRAE7 DMA Region Access Enable for Region 7
0x4900 037C DRAEH7 DMA Region Access Enable High for Region 7
0x4900 0380 - 0x4900 039C QRAE0-7 QDMA Region Access Enable for Region 0-7
0x4900 0400 - 0x4900 04FC Q0E0-Q3E15 Event Queue Entry Q0E0-Q3E15
0x4900 0600 - 0x4900 060C QSTAT0-3 Queue Status 0-3
0x4900 0620 QWMTHRA Queue Watermark Threshold A
0x4900 0640 CCSTAT EDMA3CC Status
0x4900 0800 MPFAR Memory Protection Fault Address
0x4900 0804 MPFSR Memory Protection Fault Status
0x4900 0808 MPFCR Memory Protection Fault Command
0x4900 080C MPPAG Memory Protection Page Attribute Global
0x4900 0810 - 0x4900 082C MPPA0-7 Memory Protection Page Attribute 0-7
0x4900 1000 ER Event
0x4900 1004 ERH Event High
0x4900 1008 ECR Event Clear
0x4900 100C ECRH Event Clear High
0x4900 1010 ESR Event Set
0x4900 1014 ESRH Event Set High
0x4900 1018 CER Chained Event
0x4900 101C CERH Chained Event High
0x4900 1020 EER Event Enable
0x4900 1024 EERH Event Enable High
0x4900 1028 EECR Event Enable Clear
0x4900 102C EECRH Event Enable Clear High
0x4900 1030 EESR Event Enable Set
0x4900 1034 EESRH Event Enable Set High
0x4900 1038 SER Secondary Event
0x4900 103C SERH Secondary Event High
0x4900 1040 SECR Secondary Event Clear
0x4900 1044 SECRH Secondary Event Clear High
0x4900 1050 IER Interrupt Enable
0x4900 1054 IERH Interrupt Enable High
0x4900 1058 IECR Interrupt Enable Clear
0x4900 105C IECRH Interrupt Enable Clear High
0x4900 1060 IESR Interrupt Enable Set
0x4900 1064 IESRH Interrupt Enable Set High
0x4900 1068 IPR Interrupt Pending
0x4900 106C IPRH Interrupt Pending High
0x4900 1070 ICR Interrupt Clear
0x4900 1074 ICRH Interrupt Clear High
0x4900 1078 IEVAL Interrupt Evaluate
0x4900 1080 QER QDMA Event
0x4900 1084 QEER QDMA Event Enable
0x4900 1088 QEECR QDMA Event Enable Clear
0x4900 108C QEESR QDMA Event Enable Set
0x4900 1090 QSER QDMA Secondary Event
0x4900 1094 QSECR QDMA Secondary Event Clear
Shadow Region 0 Channel Registers
0x4900 2000 ER Event
0x4900 2004 ERH Event High
0x4900 2008 ECR Event Clear
0x4900 200C ECRH Event Clear High
0x4900 2010 ESR Event Set
0x4900 2014 ESRH Event Set High
0x4900 2018 CER Chained Event
0x4900 201C CERH Chained Event High
0x4900 2020 EER Event Enable
0x4900 2024 EERH Event Enable High
0x4900 2028 EECR Event Enable Clear
0x4900 202C EECRH Event Enable Clear High
0x4900 2030 EESR Event Enable Set
0x4900 2034 EESRH Event Enable Set High
0x4900 2038 SER Secondary Event
0x4900 203C SERH Secondary Event High
0x4900 2040 SECR Secondary Event Clear
0x4900 2044 SECRH Secondary Event Clear High
0x4900 2050 IER Interrupt Enable
0x4900 2054 IERH Interrupt Enable High
0x4900 2058 IECR Interrupt Enable Clear
0x4900 205C IECRH Interrupt Enable Clear High
0x4900 2060 IESR Interrupt Enable Set
0x4900 2064 IESRH Interrupt Enable Set High
0x4900 2068 IPR Interrupt Pending
0x4900 206C IPRH Interrupt Pending High
0x4900 2070 ICR Interrupt Clear
0x4900 2074 ICRH Interrupt Clear High
0x4900 2078 IEVAL Interrupt Evaluate
0x4900 2080 QER QDMA Event
0x4900 2084 QEER QDMA Event Enable
0x4900 2088 QEECR QDMA Event Enable Clear
0x4900 208C QEESR QDMA Event Enable Set
0x4900 2090 QSER QDMA Secondary Event
0x4900 2094 QSECR QDMA Secondary Event Clear
0x4900 2200 - 0x4900 2294 - Shadow Region 1 Channels
0x4900 2400 - 0x4900 2494 - Shadow Region 2 Channels
... ...
0x4900 2E00 - 0x4900 2E94 - Shadow Channels for MP Space 7

Table 9-36 EDMA Transfer Controller (EDMA TPTC) Control Registers

TPTC0 HEX ADDRESS TPTC1 HEX ADDRESS TPTC2 HEX ADDRESS TPTC3 HEX ADDRESS ACRONYM REGISTER NAME
0x4980 0000 0x4990 0000 0x49A0 0000 0x49B0 0000 PID Peripheral Identification
0x4980 0004 0x4990 0004 0x49A0 0004 0x49B0 0004 TCCFG EDMA3TC Configuration
0x4980 0100 0x4990 0100 0x49A0 0100 0x49B0 0100 TCSTAT EDMA3TC Channel Status
0x4980 0120 0x4990 0120 0x49A0 0120 0x49B0 0120 ERRSTAT Error Status
0x4980 0124 0x4990 0124 0x49A0 0124 0x49B0 0124 ERREN Error Enable
0x4980 0128 0x4990 0128 0x49A0 0128 0x49B0 0128 ERRCLR Error Clear
0x4980 012C 0x4990 012C 0x49A0 012C 0x49B0 012C ERRDET Error Details
0x4980 0130 0x4990 0130 0x49A0 0130 0x49B0 0130 ERRCMD Error Interrupt Command
0x4980 0140 0x4990 0140 0x49A0 0140 0x49B0 0140 RDRATE Read Rate Register
0x4980 0240 0x4990 0240 0x49A0 0240 0x49B0 0240 SAOPT Source Active Options
0x4980 0244 0x4990 0244 0x49A0 0244 0x49B0 0244 SASRC Source Active Source Address
0x4980 0248 0x4990 0248 0x49A0 0248 0x49B0 0248 SACNT Source Active Count
0x4980 024C 0x4990 024C 0x49A0 024C 0x49B0 024C SADST Source Active Destination Address
0x4980 0250 0x4990 0250 0x49A0 0250 0x49B0 0250 SABIDX Source Active Source B-Index
0x4980 0254 0x4990 0254 0x49A0 0254 0x49B0 0254 SAMPPRXY Source Active Memory Protection Proxy
0x4980 0258 0x4990 0258 0x49A0 0258 0x49B0 0258 SACNTRLD Source Active Count Reload
0x4980 025C 0x4990 025C 0x49A0 025C 0x49B0 025C SASRCBREF Source Active Source Address B-Reference
0x4980 0260 0x4990 0260 0x49A0 0260 0x49B0 0260 SADSTBREF Source Active Destination Address B-Reference
0x4980 0280 0x4990 0280 0x49A0 0280 0x49B0 0280 DFCNTRLD Destination FIFO Set Count Reload
0x4980 0284 0x4990 0284 0x49A0 0284 0x49B0 0284 DFSRCBREF Destination FIFO Set Destination Address B Reference
0x4980 0288 0x4990 0288 0x49A0 0288 0x49B0 0288 DFDSTBREF Destination FIFO Set Destination Address B Reference
0x4980 0300 0x4990 0300 0x49A0 0300 0x49B0 0300 DFOPT0 Destination FIFO Options 0
0x4980 0304 0x4990 0304 0x49A0 0304 0x49B0 0304 DFSRC0 Destination FIFO Source Address 0
0x4980 0308 0x4990 0308 0x49A0 0308 0x49B0 0308 DFCNT0 Destination FIFO Count 0
0x4980 030C 0x4990 030C 0x49A0 030C 0x49B0 030C DFDST0 Destination FIFO Destination Address 0
0x4980 0310 0x4990 0310 0x49A0 0310 0x49B0 0310 DFBIDX0 Destination FIFO BIDX 0
0x4980 0314 0x4990 0314 0x49A0 0314 0x49B0 0314 DFMPPRXY0 Destination FIFO Memory Protection Proxy 0
0x4980 0340 0x4990 0340 0x49A0 0340 0x49B0 0340 DFOPT1 Destination FIFO Options 1
0x4980 0344 0x4990 0344 0x49A0 0344 0x49B0 0344 DFSRC1 Destination FIFO Source Address 1
0x4980 0348 0x4990 0348 0x49A0 0348 0x49B0 0348 DFCNT1 Destination FIFO Count 1
0x4980 034C 0x4990 034C 0x49A0 034C 0x49B0 034C DFDST1 Destination FIFO Destination Address 1
0x4980 0350 0x4990 0350 0x49A0 0350 0x49B0 0350 DFBIDX1 Destination FIFO BIDX 1
0x4980 0354 0x4990 0354 0x49A0 0354 0x49B0 0354 DFMPPRXY1 Destination FIFO Memory Protection Proxy 1
0x4980 0380 0x4990 0380 0x49A0 0380 0x49B0 0380 DFOPT2 Destination FIFO Options 2
0x4980 0384 0x4990 0384 0x49A0 0384 0x49B0 0384 DFSRC2 Destination FIFO Source Address 2
0x4980 0388 0x4990 0388 0x49A0 0388 0x49B0 0388 DFCNT2 Destination FIFO Count 2
0x4980 038C 0x4990 038C 0x49A0 038C 0x49B0 038C DFDST2 Destination FIFO Destination Address 2
0x4980 0390 0x4990 0390 0x49A0 0390 0x49B0 0390 DFBIDX2 Destination FIFO BIDX 2
0x4980 0394 0x4990 0394 0x49A0 0394 0x49B0 0394 DFMPPRXY2 Destination FIFO Memory Protection Proxy 2
0x4980 03C0 0x4990 03C0 0x49A0 03C0 0x49B0 03C0 DFOPT3 Destination FIFO Options 3
0x4980 03C4 0x4990 03C4 0x49A0 03C4 0x49B0 03C4 DFSRC3 Destination FIFO Source Address 3
0x4980 03C8 0x4990 03C8 0x49A0 03C8 0x49B0 03C8 DFCNT3 Destination FIFO Count 3
0x4980 03CC 0x4990 03CC 0x49A0 03CC 0x49B0 03CC DFDST3 Destination FIFO Destination Address 3
0x4980 03D0 0x4990 03D0 0x49A0 03D0 0x49B0 03D0 DFBIDX3 Destination FIFO BIDX 3
0x4980 03D4 0x4990 03D4 0x49A0 03D4 0x49B0 03D4 DFMPPRXY3 Destination FIFO Memory Protection Proxy 3

9.6 Ethernet Media Access Controller (EMAC)

The device includes two Ethernet Media Access Controller (EMAC) modules which provide an efficient interface between the device and the networked community. The EMAC supports 10Base-T (10 Mbits per second [Mbps]) and 100Base-TX (100 Mbps) in either half- or full-duplex mode, and 1000Base-T (1000 Mbps) in full-duplex mode, with hardware flow control and quality-of-service (QOS) support. The EMAC controls the flow of packet data from the device to an external PHY. A single MDIO interface is pinned out to control the PHY configuration and status monitoring. Multiple external PHYs can be controlled by the MDIO interface.

The EMAC module conforms to the IEEE 802.3-2002 standard, describing the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer specifications. The IEEE 802.3 standard has also been adopted by ISO/IEC and re-designated as ISO/IEC 8802-3:2000(E). Deviating from this standard, the EMAC module does not use the transmit coding error signal, MTXER. Instead of driving the error pin when an underflow condition occurs on a transmitted frame, the EMAC intentionally generates an incorrect checksum by inverting the frame CRC so that the transmitted frame is detected as an error by the network. In addition, the EMAC IOs operate at 3.3 V and are not compatible with 2.5-V IO signaling; therefore, only Ethernet PHYs with 3.3-V IO interface should be used. The EMAC module incorporates 8K bytes of internal RAM to hold EMAC buffer descriptors and contains the necessary components to enable the EMAC to make efficient use of device memory and control device interrupts.

The EMAC module on the device supports two interface modes: Media Independent Interface (MII) and Gigabit Media Independent Interface (GMII). The MII and GMII interface modes are defined in the IEEE 802.3-2002 standard. The EMAC uses the same pins for the MII and GMII modes of operation. Only one mode can be used at a time.

The MII and GMII modes-of-operation pins are as follows:

  • MII: EMAC[1:0]_TXCLK, EMAC[1:0]_RXCLK, EMAC[1:0]_TXD[3:0], EMAC[1:0]_RXD[3:0], EMAC[1:0]_TXEN, EMAC[1:0]_RXDV, EMAC[1:0]_RXER, EMAC[1:0]_COL, EMAC[1:0]_CRS, MDIO_MCLK, and MDIO_MDIO.
  • GMII: EMAC[1:0]_GMTCLK, EMAC[1:0]_TXCLK, EMAC[1:0]_RXCLK, EMAC[1:0]_TXD[7:0], EMAC[1:0]_RXD[7:0], EMAC[1:0]_TXEN, EMAC[1:0]_RXDV, EMAC[1:0]_RXER, EMAC[1:0]_COL, EMAC[1:0]_CRS, MDIO_MCLK, and MDIO_MDIO.

For more detailed information on the EMAC module, see the EMAC and MDIO chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.6.1 EMAC Peripheral Register Descriptions

Table 9-37 EMAC Control Registers

EMAC0 HEX ADDRESS EMAC1 HEX ADDRESS ACRONYM REGISTER NAME
0x4A10 0000 0x4A12 0000 TXIDVER Transmit Identification and Version
0x4A10 0004 0x4A12 0004 TXCONTROL Transmit Control
0x4A10 0008 0x4A12 0008 TXTEARDOWN Transmit Teardown
0x4A10 0010 0x4A12 0010 RXIDVER Receive Identification and Version
0x4A10 0014 0x4A12 0014 RXCONTROL Receive Control
0x4A10 0018 0x4A12 0018 RXTEARDOWN Receive Teardown
0x4A10 0080 0x4A12 0080 TXINTSTATRAW Transmit Interrupt Status (Unmasked)
0x4A10 0084 0x4A12 0084 TXINTSTATMASKED Transmit Interrupt Status (Masked)
0x4A10 0088 0x4A12 0088 TXINTMASKSET Transmit Interrupt Mask Set
0x4A10 008C 0x4A12 008C TXINTMASKCLEAR Transmit Interrupt Clear
0x4A10 0090 0x4A12 0090 MACINVECTOR MAC Input Vector
0x4A10 0094 0x4A12 0094 MACEOIVECTOR MAC End of Interrupt Vector
0x4A10 00A0 0x4A12 00A0 RXINTSTATRAW Receive Interrupt Status (Unmasked)
0x4A10 00A4 0x4A12 00A4 RXINTSTATMASKED Receive Interrupt Status (Masked)
0x4A10 00A8 0x4A12 00A8 RXINTMASKSET Receive Interrupt Mask Set
0x4A10 00AC 0x4A12 00AC RXINTMASKCLEAR Receive Interrupt Mask Clear
0x4A10 00B0 0x4A12 00B0 MACINTSTATRAW MAC Interrupt Status (Unmasked)
0x4A10 00B4 0x4A12 00B4 MACINTSTATMASKED MAC Interrupt Status (Masked)
0x4A10 00B8 0x4A12 00B8 MACINTMASKSET MAC Interrupt Mask Set
0x4A10 00BC 0x4A12 00BC MACINTMASKCLEAR MAC Interrupt Mask Clear
0x4A10 0100 0x4A12 0100 RXMBPENABLE Receive Multicast, Broadcast, Promiscuous Channel Enable
0x4A10 0104 0x4A12 0104 RXUNICASTSET Receive Unicast Enable Set
0x4A10 0108 0x4A12 0108 RXUNICASTCLEAR Receive Unicast Clear
0x4A10 010C 0x4A12 010C RXMAXLEN Receive Maximum Length
0x4A10 0110 0x4A12 0110 RXBUFFEROFFSET Receive Buffer Offset
0x4A10 0114 0x4A12 0114 RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold
0x4A10 0120 0x4A12 0120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold
0x4A10 0124 0x4A12 0124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold
0x4A10 0128 0x4A12 0128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold
0x4A10 012C 0x4A12 012C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold
0x4A10 0130 0x4A12 0130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold
0x4A10 0134 0x4A12 0134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold
0x4A10 0138 0x4A12 0138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold
0x4A10 013C 0x4A12 013C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold
0x4A10 0140 0x4A12 0140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count
0x4A10 0144 0x4A12 0144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count
0x4A10 0148 0x4A12 0148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count
0x4A10 014C 0x4A12 014C RX3FREEBUFFER Receive Channel 3 Free Buffer Count
0x4A10 0150 0x4A12 0150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count
0x4A10 0154 0x4A12 0154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count
0x4A10 0158 0x4A12 0158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count
0x4A10 015C 0x4A12 015C RX7FREEBUFFER Receive Channel 7 Free Buffer Count
0x4A10 0160 0x4A12 0160 MACCONTROL MAC Control
0x4A10 0164 0x4A12 0164 MACSTATUS MAC Status
0x4A10 0168 0x4A12 0168 EMCONTROL Emulation Control
0x4A10 016C 0x4A12 016C FIFOCONTROL FIFO Control
0x4A10 0170 0x4A12 0170 MACCONFIG MAC Configuration
0x4A10 0174 0x4A12 0174 SOFTRESET Soft Reset
0x4A10 01D0 0x4A12 01D0 MACSRCADDRLO MAC Source Address Low Bytes
0x4A10 01D4 0x4A12 01D4 MACSRCADDRHI MAC Source Address High Bytes
0x4A10 01D8 0x4A12 01D8 MACHASH1 MAC Hash Address 1
0x4A10 01DC 0x4A12 01DC MACHASH2 MAC Hash Address 2
0x4A10 01E0 0x4A12 01E0 BOFFTEST Back Off Test
0x4A10 01E4 0x4A12 01E4 TPACETEST Transmit Pacing Algorithm Test
0x4A10 01E8 0x4A12 01E8 RXPAUSE Receive Pause Timer
0x4A10 01EC 0x4A12 01EC TXPAUSE Transmit Pause Timer
0x4A10 0200 - 0x4A10 02FC 0x4A12 0200 - 0x4A12 02FC (see Table 9-38) EMAC Network Statistics Registers
0x4A10 0500 0x4A12 0500 MACADDRLO MAC Address Low Bytes, Used in Receive Address Matching
0x4A10 0504 0x4A12 0504 MACADDRHI MAC Address High Bytes, Used in Receive Address Matching
0x4A10 0508 0x4A12 0508 MACINDEX MAC Index
0x4A10 0600 0x4A12 0600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer
0x4A10 0604 0x4A12 0604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer
0x4A10 0608 0x4A12 0608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer
0x4A10 060C 0x4A12 060C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer
0x4A10 0610 0x4A12 0610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer
0x4A10 0614 0x4A12 0614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer
0x4A10 0618 0x4A12 0618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer
0x4A10 061C 0x4A12 061C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer
0x4A10 0620 0x4A12 0620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer
0x4A10 0624 0x4A12 0624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer
0x4A10 0628 0x4A12 0628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer
0x4A10 062C 0x4A12 062C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer
0x4A10 0630 0x4A12 0630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer
0x4A10 0634 0x4A12 0634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer
0x4A10 0638 0x4A12 0638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer
0x4A10 063C 0x4A12 063C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer
0x4A10 0640 0x4A12 0640 TX0CP Transmit Channel 0 Completion Pointer
0x4A10 0644 0x4A12 0644 TX1CP Transmit Channel 1 Completion Pointer
0x4A10 0648 0x4A12 0648 TX2CP Transmit Channel 2 Completion Pointer
0x4A10 064C 0x4A12 064C TX3CP Transmit Channel 3 Completion Pointer
0x4A10 0650 0x4A12 0650 TX4CP Transmit Channel 4 Completion Pointer
0x4A10 0654 0x4A12 0654 TX5CP Transmit Channel 5 Completion Pointer
0x4A10 0658 0x4A12 0658 TX6CP Transmit Channel 6 Completion Pointer
0x4A10 065C 0x4A12 065C TX7CP Transmit Channel 7 Completion Pointer
0x4A10 0660 0x4A12 0660 RX0CP Receive Channel 0 Completion Pointer
0x4A10 0664 0x4A12 0664 RX1CP Receive Channel 1 Completion Pointer
0x4A10 0668 0x4A12 0668 RX2CP Receive Channel 2 Completion Pointer
0x4A10 066C 0x4A12 066C RX3CP Receive Channel 3 Completion Pointer
0x4A10 0670 0x4A12 0670 RX4CP Receive Channel 4 Completion Pointer
0x4A10 0674 0x4A12 0674 RX5CP Receive Channel 5 Completion Pointer
0x4A10 0678 0x4A12 0678 RX6CP Receive Channel 6 Completion Pointer
0x4A10 067C 0x4A12 067C RX7CP Receive Channel 7 Completion Pointer

Table 9-38 EMAC Network Statistics Registers

EMAC0 HEX ADDRESS EMAC1 HEX ADDRESS ACRONYM REGISTER NAME
0x4A10 0200 0x4A12 0200 RXGOODFRAMES Good Receive Frames
0x4A10 0204 0x4A12 0204 RXBCASTFRAMES Broadcast Receive Frames
0x4A10 0208 0x4A12 0208 RXMCASTFRAMES Multicast Receive Frames
0x4A10 020C 0x4A12 020C RXPAUSEFRAMES Pause Receive Frames
0x4A10 0210 0x4A12 0210 RXCRCERRORS Receive CRC Errors
0x4A10 0214 0x4A12 0214 RXALIGNCODEERRORS Receive Alignment Code Errors
0x4A10 0218 0x4A12 0218 RXOVERSIZED Receive Oversized Frames
0x4A10 021C 0x4A12 021C RXJABBER Receive Jabber Frames
0x4A10 0220 0x4A12 0220 RXUNDERSIZED Receive Undersized Frames
0x4A10 0224 0x4A12 0224 RXFRAGMENTS Receive Frame Fragments
0x4A10 0228 0x4A12 0228 RXFILTERED Filtered Receive Frames
0x4A10 022C 0x4A12 022C RXQOSFILTERED Receive QOS Filtered Frames
0x4A10 0230 0x4A12 0230 RXOCTETS Receive Octet Frames
0x4A10 0234 0x4A12 0234 TXGOODFRAMES Good Transmit Frames
0x4A10 0238 0x4A12 0238 TXBCASTFRAMES Broadcast Transmit Frames
0x4A10 023C 0x4A12 023C TXMCASTFRAMES Multicast Transmit Frames
0x4A10 0240 0x4A12 0240 TXPAUSEFRAMES Pause Transmit Frames
0x4A10 0244 0x4A12 0244 TXDEFERRED Deferred Transmit Frames
0x4A10 0248 0x4A12 0248 TXCOLLISION Transmit Collision Frames
0x4A10 024C 0x4A12 024C TXSINGLECOLL Transmit Single Collision Frames
0x4A10 0250 0x4A12 0250 TXMULTICOLL Transmit Multiple Collision Frames
0x4A10 0254 0x4A12 0254 TXEXCESSIVECOLL Transmit Excessive Collision Frames
0x4A10 0258 0x4A12 0258 TXLATECOLL Transmit Late Collision Frames
0x4A10 025C 0x4A12 025C TXUNDERRUN Transmit Underrun Error
0x4A10 0260 0x4A12 0260 TXCARRIERSENSE Transmit Carrier Sense Errors
0x4A10 0264 0x4A12 0264 TXOCTETS Transmit Octet Frames
0x4A10 0268 0x4A12 0268 FRAME64 Transmit and Receive 64 Octet Frames
0x4A10 026C 0x4A12 026C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames
0x4A10 0270 0x4A12 0270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames
0x4A10 0274 0x4A12 0274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames
0x4A10 0278 0x4A12 0278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames
0x4A10 027C 0x4A12 027C FRAME1024TUP Transmit and Receive 1024 to RXMAXLEN Octet Frames
0x4A10 0280 0x4A12 0280 NETOCTETS Network Octet Frames
0x4A10 0284 0x4A12 0284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns
0x4A10 0288 0x4A12 0288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns
0x4A10 028C 0x4A12 028C RXDMAOVERRUNS Receive DMA Overruns

Table 9-39 EMAC Control Module Registers

EMAC0 HEX ADDRESS EMAC1 HEX ADDRESS ACRONYM REGISTER NAME
0x4A10 0900 0x4A12 0900 CMIDVER Identification and Version
0x4A10 0904 0x4A12 0904 CMSOFTRESET Software Reset
0x4A10 0908 0x4A12 0908 CMEMCONTROL Emulation Control
0x4A10 090C 0x4A12 090C CMINTCTRL Interrupt Control
0x4A10 0910 0x4A12 0910 CMRXTHRESHINTEN Receive Threshold Interrupt Enable
0x4A10 0914 0x4A12 0914 CMRXINTEN Receive Interrupt Enable
0x4A10 0918 0x4A12 0918 CMTXINTEN Transmit Interrupt Enable
0x4A10 091C 0x4A12 091C CMMISCINTEN Miscellaneous Interrupt Enable
0x4A10 0940 0x4A12 0940 CMRXTHRESHINTSTAT Receive Threshold Interrupt Status
0x4A10 0944 0x4A12 0944 CMRXINTSTAT Receive Interrupt Status
0x4A10 0948 0x4A12 0948 CMTXINTSTAT Transmit Interrupt Status
0x4A10 094C 0x4A12 094C CMMISCINTSTAT Miscellaneous Interrupt Status
0x4A10 0970 0x4A12 0970 CMRXINTMAX Receive Interrupts Per Millisecond
0x4A10 0974 0x4A12 0974 CMTXINTMAX Transmit Interrupts Per Millisecond

Table 9-40 EMAC Descriptor Memory RAM

EMAC0 HEX ADDRESS EMAC1 HEX ADDRESS DESCRIPTION
0x4A10 2000 - 0x4A10 3FFF 0x4A12 2000 - 0x4A12 3FFF EMAC Control Module Descriptor Memory

9.6.2 EMAC Electrical Data and Timing

Table 9-41 Timing Requirements for EMAC[1:0]_RXCLK - [G]MII Operation

(see Figure 9-43)
NO. 1000 Mbps (1 Gbps) (GMII Only) 100 Mbps 10 Mbps UNIT
MIN MAX MIN MAX MIN MAX
1 tc(RXCLK) Cycle time, EMAC[1:0]_RXCLK 8 40 400 ns
2 tw(RXCLKH) Pulse duration, EMAC1:0]_RXCLK high 2.8 14 140 ns
3 tw(RXCLKL) Pulse duration, EMAC[1:0]_RXCLK low 2.8 14 140 ns
4 tt(RXCLK) Transition time, EMAC[1:0]_RXCLK 1 3 3 ns
AM3894 AM3892 td_emac_rxclk_sprs614.gifFigure 9-43 EMAC[1:0]_RXCLK Timing

Table 9-42 Timing Requirements for EMAC[1:0]_TXCLK - [G]MII Operation

(see Figure 9-44)
NO. 1000 Mbps (1 Gbps) (GMII Only) 100 Mbps 10 Mbps UNIT
MIN MAX MIN MAX MIN MAX
1 tc(TXCLK) Cycle time, EMAC[1:0]_TXCLK 8 40 400 ns
2 tw(TXCLKH) Pulse duration, EMAC[1:0]_TXCLK high 2.8 14 140 ns
3 tw(TXCLKL) Pulse duration, EMAC[1:0]_TXCLK low 2.8 14 140 ns
4 tt(TXCLK) Transition time, EMAC[1:0]_TXCLK 1 3 3 ns
AM3894 AM3892 td_emac_txclk_sprs614.gifFigure 9-44 EMAC[1:0]_TXCLK Timing

Table 9-43 Timing Requirements for EMAC [G]MII Receive 10 Mbps,100 Mbps, and 1000 Mbps

(see Figure 9-45)
NO. 1000 Mbps (1 Gbps) 100 Mbps and 10 Mbps UNIT
MIN MAX MIN MAX
1 tsu(RXD-RXCLK) Setup time, receive selected signals valid before EMAC[1:0]_RXCLK 2 8 ns
tsu(RXDV-RXCLK)
tsu(RXER-RXCLK)
2 th(RXCLK-RXD) Hold time, receive selected signals valid after EMAC[1:0]_RXCLK 0 8 ns
th(RXCLK-RXDV)
th(RXCLK-RXER)
AM3894 AM3892 td_emac_rcv_sprs614.gifFigure 9-45 EMAC Receive Timing

Table 9-44 Switching Characteristics Over Recommended Operating Conditions for EMAC [G]MII Transmit 10 Mbps and 100 Mbps

(see Figure 9-46)
NO. PARAMETER 100 Mbps and 10 Mbps UNIT
MIN MAX
1 td(TXCLK-TXD) Delay time, EMAC[1:0]_TXCLK to transmit selected signals valid 5 25 ns
td(TXCLK-TXEN)

Table 9-45 Switching Characteristics Over Recommended Operating Conditions for EMAC [G]MII Transmit 1000 Mbps

(see Figure 9-46)
NO. PARAMETER 1000 Mbps (1 Gbps) UNIT
MIN MAX
1 td(GMTCLK-TXD) Delay time, EMAC[1:0]_GMTCLK to transmit selected signals valid 0.5 5 ns
td(GMTCLK-TXEN)
AM3894 AM3892 td_emac_xmit_sprs614.gifFigure 9-46 EMAC Transmit Timing

9.6.3 Management Data Input and Output (MDIO)

The Management Data Input and Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system.

The MDIO module implements the 802.3 serial management interface to interrogate and control Ethernet PHYs using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. A single MDIO interface is pinned out to control the PHY configuration and status monitoring. Multiple external PHYs can be controlled by the MDIO interface.

For more detailed information on the MDIO peripheral, see the EMAC and MDIO chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.6.3.1 MDIO Peripheral Register Descriptions

Table 9-46 MDIO Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x4A10 0800 VERSION MDIO Version
0x4A10 0804 CONTROL MDIO Control
0x4A10 0808 ALIVE PHY Alive Status
0x4A10 080C LINK PHY Link Status
0x4A10 0810 LINKINTRAW MDIO Link Status Change Interrupt (Unmasked)
0x4A10 0814 LINKINTMASKED MDIO Link Status Change Interrupt (Masked)
0x4A10 0818 - Reserved
0x4A10 081C USERINTRAW MDIO User Command Complete Interrupt (Unmasked)
0x4A10 0820 USERINTMASKED MDIO User Command Complete Interrupt (Masked)
0x4A10 0824 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set
0x4A10 0828 USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear
0x4A10 082C - Reserved
0x4A10 0880 USERACCESS0 MDIO User Access 0
0x4A10 0884 USERPHYSEL0 MDIO User PHY Select 0
0x4A10 0888 USERACCESS1 MDIO User Access 1
0x4A10 088C USERPHYSEL1 MDIO User PHY Select 1

9.6.3.2 MDIO Electrical Data and Timing

Table 9-47 Timing Requirements for MDIO Input

(see Figure 9-47)
NO. MIN MAX UNIT
1 tc(MCLK) Cycle time, MDIO_MCLK 400 ns
tw(MCLK) Pulse duration, MDIO_MCLK high or low 180 ns
4 tsu(MDIO-MCLKH) Setup time, MDIO_MDIO data input valid before MDIO_MCLK high 20 ns
5 th(MCLKH-MDIO) Hold time, MDIO_MDIO data input valid after MDIO_MCLK high 0 ns
AM3894 AM3892 td_mdio_in_sprs614.gifFigure 9-47 MDIO Input Timing

Table 9-48 Switching Characteristics Over Recommended Operating Conditions for MDIO Output

(see Figure 9-48)
NO. PARAMETER MIN MAX UNIT
7 td(MCLKL-MDIO) Delay time, MDIO_MCLK low to MDIO_MDIO data output valid 100 ns
AM3894 AM3892 td_mdio_out_sprs614.gifFigure 9-48 MDIO Output Timing

9.7 General-Purpose Input and Output (GPIO)

The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register controls the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts in different interrupt generation modes. The GPIO peripheral provides generic connections to external devices.

The device contains two GPIO modules and each GPIO module is made up of 32 identical channels.

The device GPIO peripheral supports the following:

  • Up to 64 3.3-V GPIO pins, GP0[31:0] and GP1[31:0] (the exact number available varies as a function of the device configuration). Each channel can be configured to be used in the following applications:
    • Data input and output
    • Keyboard interface with a de-bouncing cell
    • Synchronous interrupt generation (in active mode) upon the detection of external events (signal transitions or signal levels).
  • Synchronous interrupt requests from each channel are processed by two identical interrupt generation sub-modules to be used independently by the ARM. Interrupts can be triggered by rising or falling edge, specified for each interrupt-capable GPIO signal.
  • Shared registers can be accessed through "Set & Clear" protocol. Software writes 1 to corresponding bit positions to set or to clear GPIO signals. This allows multiple software processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to another process during GPIO programming).
  • Separate input and output registers.
  • Output register in addition to set or clear so that, if preferred by software, some GPIO output signals can be toggled by direct write to the output registers.
  • Output register, when read, reflects output drive status. This, in addition to the input register reflecting pin status and open-drain IO cell, allows wired logic to be implemented.

For more detailed information on GPIOs, see the GPIO chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.7.1 GPIO Peripheral Register Descriptions

Table 9-49 GPIO Registers

GPIO0 HEX ADDRESS GPIO1 HEX ADDRESS ACRONYM REGISTER NAME
0x4803 2000 0x4804 C000 GPIO_REVISION GPIO Revision
0x4803 2010 0x4804 C010 GPIO_SYSCONFIG System Configuration
0x4803 2020 0x4804 C020 GPIO_EOI End of Interrupt
0x4803 2024 0x4804 C024 GPIO_IRQSTATUS_RAW_0 Status Raw for Interrupt 1
0x4803 2028 0x4804 C028 GPIO_IRQSTATUS_RAW_1 Status Raw for Interrupt 2
0x4803 202C 0x4804 C02C GPIO_IRQSTATUS_0 Status for Interrupt 1
0x4803 2030 0x4804 C030 GPIO_IRQSTATUS_1 Status for Interrupt 2
0x4803 2034 0x4804 C034 GPIO_IRQSTATUS_SET_0 Enable Set for Interrupt 1
0x4803 2038 0x4804 C038 GPIO_IRQSTATUS_SET_1 Enable Set for Interrupt 2
0x4803 203C 0x4804 C03C GPIO_IRQSTATUS_CLR_0 Enable Clear for Interrupt 1
0x4803 2040 0x4804 C040 GPIO_IRQSTATUS_CLR_1 Enable Clear for Interrupt 2
0x4803 2044 0x4804 C044 GPIO_IRQWAKEN_0 Wakeup Enable for Interrupt 1
0x4803 2048 0x4804 C048 GPIO_IRQWAKEN_1 Wakeup Enable for Interrupt 2
0x4803 2114 0x4804 C114 GPIO_SYSSTATUS System Status
0x4803 2130 0x4804 C130 GPIO_CTRL Module Control
0x4803 2134 0x4804 C134 GPIO_OE Output Enable
0x4803 2138 0x4804 C138 GPIO_DATAIN Data Input
0x4803 213C 0x4804 C13C GPIO_DATAOUT Data Output
0x4803 2140 0x4804 C140 GPIO_LEVELDETECT0 Detect Low Level
0x4803 2144 0x4804 C144 GPIO_LEVELDETECT1 Detect High Level
0x4803 2148 0x4804 C148 GPIO_RISINGDETECT Detect Rising Edge
0x4803 214C 0x4804 C14C GPIO_FALLINGDETECT Detect Falling Edge
0x4803 2150 0x4804 C150 GPIO_DEBOUNCENABLE Debouncing Enable
0x4803 2154 0x4804 C154 GPIO_DEBOUNCINGTIME Debouncing Value
0x4803 2190 0x4804 C190 GPIO_CLEARDATAOUT Clear Data Output
0x4803 2194 0x4804 C194 GPIO_SETDATAOUT Set Data Output

9.7.2 GPIO Electrical Data and Timing

Table 9-50 Timing Requirements for GPIO Inputs

(see Figure 9-49)
NO. MIN MAX UNIT
1 tw(GPIH) Pulse duration, GP[x] input high 12P(1) ns
2 tw(GPIL) Pulse duration, GP[x] input low 12P(1) ns
(1) P = Module clock.

Table 9-51 Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs

(see Figure 9-49)
NO. PARAMETER MIN MAX UNIT
3 tw(GPOH) Pulse duration, GP[x] output high 36P-8(1) ns
4 tw(GPOL) Pulse duration, GP[x] output low 36P-8(1) ns
(1) P = Module clock.
AM3894 AM3892 td_gpio_sprs614.gifFigure 9-49 GPIO Port Timing

9.8 General-Purpose Memory Controller (GPMC) and Error Locator Module (ELM)

The GPMC is a device memory controller used to provide a glueless interface to external memory devices such as NOR Flash, NAND Flash (with BCH and Hamming Error Code Detection for 8-bit or 16-bit NAND Flash), SRAM, and Pseudo-SRAM. It includes flexible asynchronous protocol control for interface to SRAM-like memories and custom logic (FPGA, CPLD, ASICs, and others).

The first section of GPMC memory (0x0 - 0x00FF_FFFF) is reserved for BOOTROM. Accessible memory starts at location 0x0100_0000.

Other supported features include:

  • 8-bit and 6-bit wide multiplexed address and data bus
  • Up to 6 chip selects with up to 256M-byte address space per chip select pin
  • Non-multiplexed address and data mode
  • Pre-fetch and write posting engine associated with system DMA to get full performance from NAND device with minimum impact on NOR and SRAM concurrent access.

The device also contains an Error Locator Module (ELM) which is used to extract error addresses from syndrome polynomials generated using a BCH algorithm. Each of these polynomials gives a status of the read operations for a 512 bytes block from a NAND flash and its associated BCH parity bits, plus optionally spare area information. The ELM has the following features:

  • 4-bit, 8-bit, and 16-bit per 512-byte block error location based on BCH algorithms
  • Eight simultaneous processing contexts
  • Page-based and continuous modes
  • Interrupt generation on error location process completion
    • When the full page has been processed in page mode
    • For each syndrome polynomial in continuous mode.

For more detailed information on the GPMC, see the GPMC chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.8.1 GPMC and ELM Peripheral Register Descriptions

Table 9-52 GPMC Registers(1)(2)

HEX ADDRESS ACRONYM REGISTER NAME
0x5000 0000 GPMC_REVISION GPIO Revision
0x5000 0010 GPMC_SYSCONFIG System Configuration
0x5000 0014 GPMC_SYSSTATUS System Status
0x5000 0018 GPMC_IRQSTATUS Status for Interrupt
0x5000 001C GPMC_IRQENABLE Interrupt Enable
0x5000 0040 GPMC_TIMEOUT_CONTROL Timeout Counter Start Value
0x5000 0044 GPMC_ERR_ADDRESS Error Address
0x5000 0048 GPMC_ERR_TYPE Error Type
0x5000 0050 GPMC_CONFIG GPMC Global Configuration
0x5000 0054 GPMC_STATUS GPMC Global Status
0x5000 0060 + (0x0000 0030 * i) GPMC_CONFIG1_0 - GPMC_CONFIG1_5 Parameter Configuration 1_0-5
0x5000 0064 + (0x0000 0030 * i) GPMC_CONFIG2_0 - GPMC_CONFIG2_5 Parameter Configuration 2_0-5
0x5000 0068 + (0x0000 0030 * i) GPMC_CONFIG3_0 - GPMC_CONFIG3_5 Parameter Configuration 3_0-5
0x5000 006C + (0x0000 0030 * i) GPMC_CONFIG4_0 - GPMC_CONFIG4_5 Parameter Configuration 4_0-5
0x5000 0070 + (0x0000 0030 * i) GPMC_CONFIG5_0 - GPMC_CONFIG5_5 Parameter Configuration 5_0-5
0x5000 0074 + (0x0000 0030 * i) GPMC_CONFIG6_0 - GPMC_CONFIG6_5 Parameter Configuration 6_0-5
0x5000 0078 + (0x0000 0030 * i) GPMC_CONFIG7_0 - GPMC_CONFIG7_5 Parameter Configuration 7_0-5
0x5000 007C + (0x0000 0030 * i) GPMC_NAND_COMMAND_0 - GPMC_NAND_COMMAND_5 NAND Command 0-5
0x5000 0080 + (0x0000 0030 * i) GPMC_NAND_ADDRESS_0 - GPMC_NAND_ADDRESS_5 NAND Address 0-5
0x5000 0084 + (0x0000 0030 * i) GPMC_NAND_DATA_0 - GPMC_NAND_DATA_5 NAND Data 0-5
0x5000 01E0 GPMC_PREFETCH_CONFIG1 Prefetch Configuration 1
0x5000 01E4 GPMC_PREFETCH_CONFIG2 Prefetch Configuration 2
0x5000 01EC GPMC_PREFETCH_CONTROL Prefetch Control
0x5000 01F0 GPMC_PREFETCH_STATUS Prefetch Status
0x5000 01F4 GPMC_ECC_CONFIG ECC Configuration
0x5000 01F8 GPMC_ECC_CONTROL ECC Control
0x5000 01FC GPMC_ECC_SIZE_CONFIG ECC Size Configuration
0x5000 0200 + (0x0000 0004 * j) GPMC_ECC0_RESULT - GPMC_ECC8_RESULT ECC0-8 Result
0x5000 0240 + (0x0000 0010 * i) GPMC_BCH_RESULT0_0 - GPMC_BCH_RESULT0_5 BCH Result 0_0-5
0x5000 0244 + (0x0000 0010 * i) GPMC_BCH_RESULT1_0 - GPMC_BCH_RESULT1_5 BCH Result 1_0-5
0x5000 0248 + (0x0000 0010 * i) GPMC_BCH_RESULT2_0 - GPMC_BCH_RESULT2_5 BCH Result 2_0-5
0x5000 024C + (0x0000 0010 * i) GPMC_BCH_RESULT3_0 - GPMC_BCH_RESULT3_5 BCH Result 3_0-5
0x5000 0300 + (0x0000 0010 * i) GPMC_BCH_RESULT4_0 - GPMC_BCH_RESULT4_5 BCH Result 4_0-5
0x5000 0304 + (0x0000 0010 * i) GPMC_BCH_RESULT5_0 - GPMC_BCH_RESULT5_5 BCH Result 5_0-5
0x5000 0308 + (0x0000 0010 * i) GPMC_BCH_RESULT6_0 - GPMC_BCH_RESULT6_5 BCH Result 6_0-5
0x5000 02D0 GPMC_BCH_SWDATA BCH Data
(1) i = 0 to 5.
(2) j = 0 to 8.

Table 9-53 ELM Registers(1)

HEX ADDRESS ACRONYM REGISTER NAME
0x4808 0000 ELM_REVISION Revision
0x4808 0010 ELM_SYSCONFIG Configuration
0x4808 0014 ELM_SYSSTATUS Status
0x4808 0018 ELM_IRQSTATUS Interrupt status
0x4808 001C ELM_IRQENABLE Interrupt enable
0x4808 0020 ELM_LOCATION_CONFIG ECC algorithm parameters
0x4808 0080 ELM_PAGE_CTRL Page definition
0x4808 0400 + (0x40 * i) ELM_SYNDROME_FRAGMENT_0_i Input syndrome polynomial bits 0 to 31
0x4808 0404 + (0x40 * i) ELM_SYNDROME_FRAGMENT_1_i Input syndrome polynomial bits 32 to 63
0x4808 0408 + (0x40 * i) ELM_SYNDROME_FRAGMENT_2_i Input syndrome polynomial bits 64 to 95
0x4808 040C + (0x40 * i) ELM_SYNDROME_FRAGMENT_3_i Input syndrome polynomial bits 96 to 127
0x4808 0410 + (0x40 * i) ELM_SYNDROME_FRAGMENT_4_i Input syndrome polynomial bits 128 to 159
0x4808 0414 + (0x40 * i) ELM_SYNDROME_FRAGMENT_5_i Input syndrome polynomial bits 160 to 191
0x4808 0418 + (0x40 * i) ELM_SYNDROME_FRAGMENT_6_i Input syndrome polynomial bits 192 to 207
0x4808 0800 + (0x100 * i) ELM_LOCATION_STATUS_i Exit status
0x4808 0880 + (0x100 * i) ELM_ERROR_LOCATION_0_i Error location
0x4808 0884 + (0x100 * i) ELM_ERROR_LOCATION_1_i Error location
0x4808 0888 + (0x100 * i) ELM_ERROR_LOCATION_2_i Error location
0x4808 088C + (0x100 * i) ELM_ERROR_LOCATION_3_i Error location
0x4808 0890 + (0x100 * i) ELM_ERROR_LOCATION_4_i Error location
0x4808 0894 + (0x100 * i) ELM_ERROR_LOCATION_5_i Error location
0x4808 0898 + (0x100 * i) ELM_ERROR_LOCATION_6_i Error location
0x4808 089C + (0x100 * i) ELM_ERROR_LOCATION_7_i Error location
0x4808 08A0 + (0x100 * i) ELM_ERROR_LOCATION_8_i Error location
0x4808 08A4 + (0x100 * i) ELM_ERROR_LOCATION_9_i Error location
0x4808 08A8 + (0x100 * i) ELM_ERROR_LOCATION_10_i Error location
0x4808 08AC + (0x100 * i) ELM_ERROR_LOCATION_11_i Error location
0x4808 08B0 + (0x100 * i) ELM_ERROR_LOCATION_12_i Error location
0x4808 08B4 + (0x100 * i) ELM_ERROR_LOCATION_13_i Error location
0x4808 08B8 + (0x100 * i) ELM_ERROR_LOCATION_14_i Error location
0x4808 08BC + (0x100 * i) ELM_ERROR_LOCATION_15_i Error location
(1) i = 0 to 7.

9.8.2 GPMC Electrical Data and Timing

9.8.2.1 GPMC and NOR Flash Interface Synchronous Mode Timing

Table 9-54 Timing Requirements for GPMC and NOR Flash Interface - Synchronous Mode

(see Figure 9-50, Figure 9-51, Figure 9-52, Figure 9-53, Figure 9-54, Figure 9-55)
NO. MIN MAX UNIT
13 tsu(DV-CLKH) Setup time, read GPMC_D[15:0] valid before GPMC_CLK high 3.2 ns
14 th(CLKH-DV) Hold time, read GPMC_D[15:0] valid after GPMC_CLK high 2.5 ns
22 tsu(WAITV-CLKH) Setup time, GPMC_WAIT valid before GPMC_CLK high 3.2 ns
23 th(CLKH-WAITV) Hold time, GPMC_WAIT valid after GPMC_CLK high 2.5 ns

Table 9-55 Switching Characteristics Over Recommended Operating Conditions for GPMC and NOR Flash Interface - Synchronous Mode

(see Figure 9-50, Figure 9-51, Figure 9-52, Figure 9-53, Figure 9-54, Figure 9-55)
NO. PARAMETER MIN MAX UNIT
1 tc(CLK) Cycle time, output clock GPMC_CLK period 16(1) ns
2 tw(CLKH) Pulse duration, output clock GPMC_CLK high 0.5P(2) ns
tw(CLKL) Pulse duration, output clock GPMC_CLK low 0.5P(2)
3 td(CLKH-nCSV) Delay time, GPMC_CLK rising edge to GPMC_CS[x] transition F - 2.2(3) F + 4.5(3) ns
4 td(CLKH-nCSIV) Delay time, GPMC_CLK rising edge to GPMC_CS[x] invalid E - 2.2(4) E + 4.5(4) ns
5 td(ADDV-CLK) Delay time, GPMC_A[27:0] address bus valid to GPMC_CLK first edge B - 4.5(5) B + 2.3(5) ns
6 td(CLKH-ADDIV) Delay time, GPMC_CLK rising edge to GPMC_A[27:0] GPMC address bus invalid -2.3 ns
7 td(nBEV-CLK) Delay time, GPMC_BE0_CLE, GPMC_BE1 valid to GPMC_CLK first edge B - 1.9(5) B + 2.3(5) ns
8 td(CLKH-nBEIV) Delay time, GPMC_CLK rising edge to GPMC_BE0_CLE, GPMC_BE1 invalid D - 2.3(6) D + 1.9(6) ns
9 td(CLKH-nADV) Delay time, GPMC_CLK rising edge to GPMC_ADV_ALE transition G - 2.3(7) G + 4.5(7) ns
10 td(CLKH-nADVIV) Delay time, GPMC_CLK rising edge to GPMC_ADV_ALE invalid D - 2.3(6) D + 4.5(6) ns
11 td(CLKH-nOE) Delay time, GPMC_CLK rising edge to GPMC_OE_RE transition H - 2.3(8) H + 3.5(8) ns
12 td(CLKH-nOEIV) Delay time, GPMC_CLK rising edge to GPMC_OE_RE invalid E - 2.3(4) E + 3.5(4) ns
15 td(CLKH-nWE) Delay time, GPMC_CLK rising edge to GPMC_WE transition I - 2.3(9) I + 4.5(9) ns
16 td(CLKH-Data) Delay time, GPMC_CLK rising edge to GPMC_D[15:0] data bus transition J - 2.3(10) J + 1.9(10) ns
18 td(CLKH-nBE) Delay time, GPMC_CLK rising edge to GPMC_BE0_CLE, GPMC_BE1 transition J - 2.3(10) J + 1.9(10) ns
19 tw(nCSV) Pulse duration, GPMC_CS[x] low A(11) ns
20 tw(nBEV) Pulse duration, GPMC_BE0_CLE, GPMC_BE1 low C(12) ns
21 tw(nADVV) Pulse duration, GPMC_ADV_ALE low K(13) ns
24 td(CLKH-DIR) Delay time, GPMC_CLK rising edge to GPMC_DIR high (IN direction) H - 2.3(8) H + 4.5(8) ns
25 td(CLKH-DIRIV) Delay time, GPCM_CLK rising edge to GPMC_DIR low (OUT direction) M - 2.3(14) M + 4.5(14) ns
(1) Sync mode = 62.5 MHz; Async mode = 125 MHz.
(2) P = GPMC_CLK period.
(3) For nCS falling edge (CS activated):
  • For GpmcFCLKDivider = 0:
    F = 0.5 * CSExtraDelay * GPMC_FCLK
  • For GpmcFCLKDivider = 1:
    F = 0.5 * CSExtraDelay * GPMC_FCLK if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime are even)
    F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK otherwise
  • For GpmcFCLKDivider = 2:
    F = 0.5 * CSExtraDelay * GPMC_FCLK if ((CSOnTime - ClkActivationTime) is a multiple of 3)
    F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime - ClkActivationTime - 1) is a multiple of 3)
    F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime - ClkActivationTime - 2) is a multiple of 3)
(4) For single read: E = (CSRdOffTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: E = (CSRdOffTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: E = (CSWrOffTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(5) B = ClkActivationTime * GPMC_FCLK
(6) For single read: D = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: D = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: D = (WrCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(7) For ADV falling edge (ADV activated):
  • Case GpmcFCLKDivider = 0:
    G = 0.5 * ADVExtraDelay * GPMC_FCLK
  • Case GpmcFCLKDivider = 1:
    G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and ADVOnTime are even)
    G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
  • Case GpmcFCLKDivider = 2:
    G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVOnTime - ClkActivationTime) is a multiple of 3)
    G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime - ClkActivationTime - 1) is a multiple of 3)
    G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime - ClkActivationTime - 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Reading mode:
  • Case GpmcFCLKDivider = 0:
    G = 0.5 * ADVExtraDelay * GPMC_FCLK
  • Case GpmcFCLKDivider = 1:
    G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and ADVRdOffTime are even)
    G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
  • Case GpmcFCLKDivider = 2:
    G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime) is a multiple of 3)
    G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime - 1) is a multiple of 3)
    G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime - 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Writing mode:
  • Case GpmcFCLKDivider = 0:
    G = 0.5 * ADVExtraDelay * GPMC_FCLK
  • Case GpmcFCLKDivider = 1:
    G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and ADVWrOffTime are even)
    G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
  • Case GpmcFCLKDivider = 2:
    G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime) is a multiple of 3)
    G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime - 1) is a multiple of 3)
    G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime - 2) is a multiple of 3)
(8) For OE falling edge (OE activated) or IO DIR rising edge (IN direction) :
  • Case GpmcFCLKDivider = 0:
    H = 0.5 * OEExtraDelay * GPMC_FCLK
  • Case GpmcFCLKDivider = 1:
    H = 0.5 * OEExtraDelay * GPMC_FCLK if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime are even)
    H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise
  • Case GpmcFCLKDivider = 2:
    H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOnTime - ClkActivationTime) is a multiple of 3)
    H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime - ClkActivationTime - 1) is a multiple of 3)
    H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime - ClkActivationTime - 2) is a multiple of 3)
For OE rising edge (OE deactivated):
  • Case GpmcFCLKDivider = 0:
    H = 0.5 * OEExtraDelay * GPMC_FCLK
  • Case GpmcFCLKDivider = 1:
    H = 0.5 * OEExtraDelay * GPMC_FCLK if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are even)
    H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise
  • Case GpmcFCLKDivider = 2:
    H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOffTime - ClkActivationTime) is a multiple of 3)
    H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime - ClkActivationTime - 1) is a multiple of 3)
    H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime - ClkActivationTime - 2) is a multiple of 3)
(9) For WE falling edge (WE activated):
  • Case GpmcFCLKDivider = 0:
    I = 0.5 * WEExtraDelay * GPMC_FCLK
  • Case GpmcFCLKDivider = 1:
    I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime are even)
    I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise
  • Case GpmcFCLKDivider = 2:
    I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOnTime - ClkActivationTime) is a multiple of 3)
    I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime - ClkActivationTime - 1) is a multiple of 3)
    I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime - ClkActivationTime - 2) is a multiple of 3)
For WE rising edge (WE deactivated):
  • Case GpmcFCLKDivider = 0:
    I = 0.5 * WEExtraDelay * GPMC_FCLK
  • Case GpmcFCLKDivider = 1:
    I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime are even)
    I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise
  • Case GpmcFCLKDivider = 2:
    I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOffTime - ClkActivationTime) is a multiple of 3)
    I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime - ClkActivationTime - 1) is a multiple of 3)
    I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime - ClkActivationTime - 2) is a multiple of 3)
(10) J = GPMC_FCLK period.
(11) For single read: A = (CSRdOffTime - CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK period
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period [n = page burst access number]
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period [n = page burst access number]
(12) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: C = (RdCycleTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK [n = page burst access number]
For Burst write: C = (WrCycleTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK [n = page burst access number]
(13) For read: K = (ADVRdOffTime - ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For write: K = (ADVWrOffTime - ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(14) M = ( RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK.
Parameter M expression is given as one example of GPMC programming. The IO DIR signal goes from IN to OUT after both RdCycleTime and BusTurnAround completion. Behavior of the IO direction signal depends on the kind of successive read and write accesses performed to the memory and multiplexed or non-multiplexed memory addressing scheme, whether the bus keeping feature is enabled or not. The IO DIR behavior is automatically handled by the GPMC controller.
AM3894 AM3892 gpmc_nor_singlerd_sprs614.gifFigure 9-50 GPMC Non-Multiplexed NOR Flash - Synchronous Single Read (GPMCFCLKDIVIDER = 0)
AM3894 AM3892 gpmc_nor_burstrd_sprs614.gifFigure 9-51 GPMC Non-Multiplexed NOR Flash - 4x16-bit Synchronous Burst Read (GPMCFCLKDIVIDER = 0)
AM3894 AM3892 gpmc_nor_burstwrt_sprs614.gifFigure 9-52 GPMC Non-Multiplexed NOR Flash - Synchronous Burst Write (GPMCFCLKDIVIDER = 0)
AM3894 AM3892 gpmc_mux_nor_singlerd_sprs614.gifFigure 9-53 GPMC Multiplexed NOR Flash - Synchronous Single Read (GPMCFCLKDIVIDER = 0)
AM3894 AM3892 gpmc_mux_nor_burstrd_sprs614.gifFigure 9-54 GPMC Multiplexed NOR Flash - 4x16-bit Synchronous Burst Read (GPMCFCLKDIVIDER = 0)
AM3894 AM3892 gpmc_mux_nor_burstwrt_sprs614.gifFigure 9-55 GPMC Multiplexed NOR Flash - Synchronous Burst Write (GPMCFCLKDIVIDER = 0)

9.8.2.2 GPMC and NOR Flash Interface Asynchronous Mode Timing

Table 9-56 GPMC and NOR Flash Interface Asynchronous Mode Timing - Internal Parameters

NO. MIN MAX UNIT
1 Max. output data generation delay from internal functional clock 6.5 ns
2 Max. input data capture delay by internal functional clock 4 ns
3 Max. chip select generation delay from internal functional clock 6.5 ns
4 Max. address generation delay from internal functional clock 6.5 ns
5 Max. address valid generation delay from internal functional clock 6.5 ns
6 Max. byte enable generation delay from internal functional clock 6.5 ns
7 Max. output enable generation delay from internal functional clock 6.5 ns
8 Max. write enable generation delay from internal functional clock 6.5 ns
9 Max. functional clock skew 100 ps

Table 9-57 Timing Requirements for GPMC and NOR Flash Interface - Asynchronous Mode

(see Figure 9-56, Figure 9-57, Figure 9-58, Figure 9-60)
NO. MIN MAX UNIT
6 tacc(DAT) Data maximum access time (GPMC_FCLK cycles) H(1) cycles
21 tacc1-pgmode(DAT) Page mode successive data maximum access time (GPMC_FCLK cycles) P(2) cycles
22 tacc2-pgmode(DAT) Page mode first data maximum access time (GPMC_FCLK cycles) H(1) cycles
(1) H = AccessTime * (TimeParaGranularity + 1)
(2) P = PageBurstAccessTime * (TimeParaGranularity + 1).

Table 9-58 Switching Characteristics Over Recommended Operating Conditions for GPMC and NOR Flash Interface - Asynchronous Mode

(see Figure 9-56, Figure 9-57, Figure 9-58, Figure 9-59, Figure 9-60, Figure 9-61)
NO. PARAMETER MIN MAX UNIT
1 tw(nBEV) Pulse duration, GPMC_BE0_CLE, GPMC_BE1 valid time N(1) ns
2 tw(nCSV) Pulse duration, GPMC_CS[x] low A(2) ns
4 td(nCSV-nADVIV) Delay time, GPMC_CS[x] valid to GPMC_NADV_ALE invalid B - 0.2(3) B + 2.0(3) ns
5 td(nCSV-nOEIV) Delay time, GPMC_CS[x] valid to GPMC_OE_RE invalid (single read) C - 0.2(4) C + 2.0(4) ns
10 td(AV-nCSV) Delay time, address bus valid to GPMC_CS[x] valid J - 0.2(5) J + 2.0(5) ns
11 td(nBEV-nCSV) Delay time, GPMC_BE0_CLE, GPMC_BE1 valid to GPMC_CS[x] valid J - 0.2(5) J + 2.0(5) ns
13 td(nCSV-nADVV) Delay time, GPMC_CS[x] valid to GPMC_ADV_ALE valid K - 0.2(6) K + 2.0(6) ns
14 td(nCSV-nOEV) Delay time, GPMC_CS[x] valid to GPMC_OE_RE valid L - 0.2(7) L + 2.0(7) ns
15 td(nCSV-DIR) Delay time, GPMC_CS[x] valid to GPMC_DIR high L - 0.2(7) L + 2.0(7) ns
16 td(nCSV-DIR) Delay time, GPMC_CS[x] valid to GPMC_DIR low M - 0.2(8) M + 2.0(8) ns
17 tw(AIV) Address invalid duration between 2 successive read or write accesses G(9) ns
19 td(nCSV-nOEIV) Delay time, GPMC_CS[x] valid to GPMC_OE_RE invalid (burst read) I - 0.2(10) I + 2.0(10) ns
21 tw(AV) Pulse duration, address valid: second, third and fourth accesses D(11) ns
26 td(nCSV-nWEV) Delay time, GPMC_CS[x] valid to GPMC_WE valid E - 0.2(12) E + 2.0(12) ns
28 td(nCSV-nWEIV) Delay time, GPMC_CS[x] valid to GPMC_WE invalid F - 0.2(13) F + 2.0(13) ns
29 td(nWEV-DV) Delay time, GPMC_WE valid to data bus valid 2.0 ns
30 td(DV-nCSV) Delay time, data bus valid to GPMC_CS[x] valid J - 0.2(5) J + 2.0(5) ns
38 td(nOEV-AIV) Delay time, GPMC_OE_RE valid to GPMC_A[16:1]_D[15:0] address phase end 2.0 ns
(1) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: N = (RdCycleTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: N = (WrCycleTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(2) For single read: A = (CSRdOffTime - CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For single write: A = (CSWrOffTime - CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(3) = B - nCS Max Delay + nADV Min Delay
For reading: B = ((ADVRdOffTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay - CSExtraDelay)) * GPMC_FCLK
For writing: B = ((ADVWrOffTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay - CSExtraDelay)) * GPMC_FCLK
(4) = C - nCS Max Delay + nOE Min Delay
C = ((OEOffTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay - CSExtraDelay)) * GPMC_FCLK
(5) = J - Address Max Delay + nCS Min Delay
J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK
(6) = K - nCS Max Delay + nADV Min Delay
K = ((ADVOnTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay - CSExtraDelay)) * GPMC_FCLK
(7) = L - nCS Max Delay + nOE Min Delay
L = ((OEOnTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay - CSExtraDelay)) * GPMC_FCLK
(8) = M - nCS Max Delay + nOE Min Delay
M = ((RdCycleTime - CSOnTime) * (TimeParaGranularity + 1) - 0.5 * CSExtraDelay) * GPMC_FCLK.
Parameter M expression is given as one example of GPMC programming. The IO DIR signal goes from IN to OUT after both RdCycleTime and BusTurnAround completion. Behavior of the IO direction signal depends on the kind of successive read and write accesses performed to the memory and multiplexed or non-multiplexed memory addressing scheme, whether the bus keeping feature is enabled or not. The IO DIR behavior is automatically handled by the GPMC controller.
(9) G = Cycle2CycleDelay * GPMC_FCLK
(10) = I - nCS Max Delay + nOE Min Delay
I = ((OEOffTime + (n - 1) * PageBurstAccessTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay - CSExtraDelay)) * GPMC_FCLK
(11) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK
(12) = E - nCS Max Delay + nWE Min Delay
E = ((WEOnTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay - CSExtraDelay)) * GPMC_FCLK
(13) = F - nCS Max Delay + nWE Min Delay
F = ((WEOffTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay - CSExtraDelay)) * GPMC_FCLK
AM3894 AM3892 gpmc_nor_asyncrd_sprs614.gifFigure 9-56 GPMC Non-Multiplexed NOR Flash - Asynchronous Read - Single Word Timing
AM3894 AM3892 gpmc_nor_asyncrd_32_sprs614.gifFigure 9-57 GPMC Non-Multiplexed NOR Flash - Asynchronous Read - 32-Bit Timing
AM3894 AM3892 gpmc_nor_asyncrd_4x16_sprs614.gifFigure 9-58 GPMC Non-Multiplexed Only NOR Flash - Asynchronous Read - Page Mode 4x16-Bit Timing
AM3894 AM3892 gpmc_nor_asyncwrt_sprs614.gifFigure 9-59 GPMC Non-Multiplexed NOR Flash - Asynchronous Write - Single Word Timing
AM3894 AM3892 gpmc_mux_nor_asyncrd_sprs614.gifFigure 9-60 GPMC Multiplexed NOR Flash - Asynchronous Read - Single Word Timing
AM3894 AM3892 gpmc_mux_nor_asyncwrt_sprs614.gifFigure 9-61 GPMC Multiplexed NOR Flash - Asynchronous Write - Single Word Timing

9.8.2.3 GPMC and NAND Flash Interface Asynchronous Mode Timing

Table 9-59 GPMC and NAND Flash Interface Asynchronous Mode Timing - Internal Parameters

NO. MIN MAX UNIT
1 Max. output data generation delay from internal functional clock 6.5 ns
2 Max. input data capture delay by internal functional clock 4.0 ns
3 Max. chip select generation delay from internal functional clock 6.5 ns
4 Max. address latch enable generation delay from internal functional clock 6.5 ns
5 Max. command latch enable generation delay from internal functional clock 6.5 ns
6 Max. output enable generation delay from internal functional clock 6.5 ns
7 Max. write enable generation delay from internal functional clock 6.5 ns
8 Max. functional clock skew 100.0 ps

Table 9-60 Timing Requirements for GPMC and NAND Flash Interface

(see Figure 9-64)
NO. MIN MAX UNIT
13 tacc(DAT) Data maximum access time (GPMC_FCLK cycles) J(1) cycles
(1) J = AccessTime * (TimeParaGranularity + 1)

Table 9-61 Switching Characteristics Over Recommended Operating Conditions for GPMC and NAND Flash Interface

(see Figure 9-62, Figure 9-63, Figure 9-64, Figure 9-65)
NO. PARAMETER MIN MAX UNIT
1 tw(nWEV) Pulse duration, GPMC_WE valid time A(1) ns
2 td(nCSV-nWEV) Delay time, GPMC_CS[x] valid to GPMC_WE valid B - 0.2(2) B + 2.0(2) ns
3 td(CLEH-nWEV) Delay time, GPMC_BE0_CLE high to GPMC_WE valid C - 0.2(3) C + 2.0(3) ns
4 td(nWEV-DV) Delay time, GPMC_D[15:0] valid to GPMC_WE valid D - 0.2(4) D + 2.0(4) ns
5 td(nWEIV-DIV) Delay time, GPMC_WE invalid to GPMC_D[15:0] invalid E - 0.2(5) E + 2.0(5) ns
6 td(nWEIV-CLEIV) Delay time, GPMC_WE invalid to GPMC_BE0_CLE invalid F - 0.2(6) F + 2.0(6) ns
7 td(nWEIV-nCSIV) Delay time, GPMC_WE invalid to GPMC_CS[x] invalid G - 0.2(7) G + 2.0(7) ns
8 td(ALEH-nWEV) Delay time, GPMC_ADV_ALE High to GPMC_WE valid C - 0.2(3) C + 2.0(3) ns
9 td(nWEIV-ALEIV) Delay time, GPMC_WE invalid to GPMC_ADV_ALE invalid F - 0.2(6) F + 2.0(6) ns
10 tc(nWE) Cycle time, write cycle time H(8) ns
11 td(nCSV-nOEV) Delay time, GPMC_CS[x] valid to GPMC_OE_RE valid I - 0.2(9) I + 2.0(9) ns
12 tw(nOEV) Pulse duration, GPMC_OE_RE valid time K(10) ns
13 tc(nOE) Cycle time, read cycle time L(11) ns
14 td(nOEIV-nCSIV) Delay time, GPMC_OE_RE invalid to GPMC_CS[x] invalid M - 0.2(12) M + 2.0(12) ns
(1) A = (WEOffTime - WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(2) = B + nWE Min Delay - nCS Max Delay
B = ((WEOnTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay - CSExtraDelay)) * GPMC_FCLK
(3) = C + nWE Min Delay - CLE Max Delay
C = ((WEOnTime - ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay - ADVExtraDelay)) * GPMC_FCLK
(4) = D + nWE Min Delay - Data Max Delay
D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay ) * GPMC_FCLK
(5) =E + Data Min Delay - nWE Max Delay
E = ((WrCycleTime - WEOffTime) * (TimeParaGranularity + 1) - 0.5 * WEExtraDelay ) * GPMC_FCLK
(6) = F + CLE Min Delay - nWE Max Delay
F = ((ADVWrOffTime - WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay - WEExtraDelay )) * GPMC_FCLK
(7) =G + nCS Min Delay - nWE Max Delay
G = ((CSWrOffTime - WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay - WEExtraDelay )) * GPMC_FCLK
(8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK
(9) = I + nOE Min Delay - nCS Max Delay
I = ((OEOnTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay - CSExtraDelay)) * GPMC_FCLK
(10) K = (OEOffTime - OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK
(11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK
(12) =M + nCS Min Delay - nOE Max Delay
M = ((CSRdOffTime - OEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay - OEExtraDelay ))* GPMC_FCLK
AM3894 AM3892 gpmc_nand_cmd_ltch_sprs614.gifFigure 9-62 GPMC and NAND Flash - Command Latch Cycle Timing
AM3894 AM3892 gpmc_nand_addr_ltch_sprs614.gifFigure 9-63 GPMC and NAND Flash - Address Latch Cycle Timing
AM3894 AM3892 gpmc_nand_data_rd_sprs614.gifFigure 9-64 GPMC and NAND Flash - Data Read Cycle Timing
AM3894 AM3892 gpmc_nand_data_wrt_sprs614.gifFigure 9-65 GPMC and NAND Flash - Data Write Cycle Timing

9.9 High-Definition Multimedia Interface (HDMI)

The device includes an HDMI 1.3a-compliant transmitter for digital video and audio data to display devices. The HDMI interface consists of a digital HDMI transmitter core with TMDS encoder, a core wrapper with interface logic and control registers, and a transmit PHY, with the following features:

  • Hot-plug detection
  • Consumer electronics control (CEC) messages
  • DVI 1.0 compliant (only RGB pixel format)
  • CEA 861-D and VESA DMT formats
  • Supports up to 165-MHz pixel clock:
    • 1920 x 1080p @75 Hz with 8-bit component color depth
    • 1920 x 1200 @60 Hz with 8-bit component color depth
    • 1600 x 1200 @60 Hz with 8-bit component color depth
  • Support for deep-color mode:
    • 10-bit component color depth up to 1080p @60 Hz (maximum pixel clock = 148.5 MHz)
    • 12-bit component color depth at 720p or 1080i @60 Hz (maximum pixel clock = 123.75 MHz)
  • Uncompressed multichannel (up to eight channels) audio (L-PCM) support
  • Master I2C interface for display data channel (DDC) connection
  • TMDS clock to the HDMI-PHY is up to 185.625 MHz
  • Maximum supported pixel clock:
    • 165 MHz for 8-bit color depth
    • 148.5 MHz for 10-bit color depth
    • 123.75 MHz for 12-bit color depth
  • Options available to support HDCP encryption engine for transmitting protected audio and video (contact local TI sales representative for information).

For more details on the HDMI, see the HDMI chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.9.1 HDMI Interface Design Specifications

NOTE

For more information on PCB layout, see the DM816xx Easy CYG Package PCB Escape Routing application report (literature number SPRABK6).

This section provides PCB design and layout specifications for the HDMI interface. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. Simulation and system design work has been done to ensure the HDMI interface requirements are met.

9.9.1.1 HDMI Interface Schematic

The HDMI bus is separated into three main sections:

  1. Transition Minimized Differential Signaling (TMDS) high-speed digital video interface
  2. Display Data Channel (I2C bus for configuration and status exchange between two devices)
  3. Consumer Electronics Control (optional) for remote control of connected devices.

The DDC and CEC are low-speed interfaces, so nothing special is required for PCB layout of these signals. Their connection is shown in Figure 9-66.

The TMDS channels are high-speed differential pairs and, therefore, require the most care in layout. Specifications for TMDS layout are below.

Figure 9-66 shows the HDMI interface schematic. The specific pin numbers can be obtained from Table 4-7, HDMI Terminal Functions.

AM3894 AM3892 hdmi_if_hi_lvl_sprs614.gif
A. 5K-10K Ω pullup resistors are required if not integrated in the ESD protection chip.
Figure 9-66 HDMI Interface High-Level Schematic

9.9.1.2 TMDS Routing

The TMDS signals are high-speed differential pairs. Care must be taken in the PCB layout of these signals to ensure good signal integrity.

The TMDS differential signal traces must be routed to achieve 100 Ω (±10%) differential impedance and 60 Ω (±10%) single-ended impedance. Single-ended impedance control is required because differential signals are extremely difficult to closely couple on PCBs and, therefore, single-ended impedance becomes important.

These impedances are impacted by trace width, trace spacing, distance to reference planes, and dielectric material. Verify with a PCB design tool that the trace geometry for both data signal pairs results in as close to 60 Ω impedance traces as possible. For best accuracy, work with your PCB fabricator to ensure this impedance is met.

In general, closely coupled differential signal traces are not an advantage on PCBs. When differential signals are closely coupled, tight spacing and width control is necessary. Very small width and spacing variations affect impedance dramatically, so tight impedance control can be more problematic to maintain in production.

Loosely coupled PCB differential signals make impedance control much easier. Wider traces and spacing make obstacle avoidance easier, and trace width variations do not affect impedance as much; therefore, it is easier to maintain an accurate impedance over the length of the signal. The wider traces also show reduced skin effect and, therefore, often result in better signal integrity.

Table 9-62 shows the routing specifications for the TMDS signals.

Table 9-62 TMDS Routing Specifications

PARAMETER MIN TYP MAX UNIT
Processor-to-HDMI header trace length 7000 Mils
Number of stubs allowed on TMDS traces 0 Stubs
TX and RX pair differential impedance 90 100 110 Ω
TX and RX single-ended impedance 54 60 66 Ω
Number of vias on each TMDS trace 2 Vias(1)
TMDS differential pair to any other trace spacing 2*DS(2)
(1) Vias must be used in pairs with their distance minimized.
(2) DS = differential spacing of the HDMI traces.

9.9.1.3 DDC Signals

As shown in Figure 9-66, the DDC connects just like a standard I2C bus. As such, resistor pullups must be used to pull up the open drain buffer signals unless they are integrated into the ESD protection chip used. If used, these pullup resistors should be connected to a 3.3-V supply.

9.9.1.4 HDMI ESD Protection Device (Required)

Interfaces that connect to a cable such as HDMI generally require more ESD protection than can be built into the processor's outputs. Therefore, this HDMI interface requires the use of an ESD protection chip to provide adequate ESD protection and to translate I2C voltage levels from the 3.3 V supplied by the device to the 5 volts required by the HDMI specification.

When selecting an ESD protection chip, choose the lowest capacitance ESD protection available to minimize signal degradation. In no case should the ESD protection circuit capacitance be more than 5 pF.

TI manufactures devices that provide ESD protection for HDMI signals such as the TPD12S521. For more information see the www.ti.com website.

9.9.1.5 PCB Stackup Specifications

Table 9-63 shows the stackup and feature sizes required for HDMI.

Table 9-63 HDMI PCB Stackup Specifications

PARAMETER MIN TYP MAX UNIT
PCB routing and plane layers 4 6 - Layers
Signal routing layers 2 3 - Layers
Number of ground plane cuts allowed within HDMI routing region - - 0 Cuts
Number of layers between HDMI routing region and reference ground plane - - 0 Layers
PCB trace width - 4 - Mils
PCB BGA escape via pad size - 20 - Mils
PCB BGA escape via hole size - 10 Mils
Processor device BGA pad size(1)(2) 0.3 mm
(1) Non-solder mask defined pad.
(2) Per IPC-7351A BGA pad size guideline.

9.9.1.6 Grounding

Each TMDS channel has its own shield pin which should be grounded to provide a return current path for the TMDS signal.

9.9.2 HDMI Peripheral Register Descriptions

Table 9-64 HDMI Wrapper Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x46C0 0000 HDMI_WP_REVISION IP Revision Identifier
0x46C0 0010 HDMI_WP_SYSCONFIG Clock Management Configuration
0x46C0 0024 HDMI_WP_IRQSTATUS_RAW Raw Interrupt Status
0x46C0 0028 HDMI_WP_IRQSTATUS Interrupt Status
0x46C0 002C HDMI_WP_IRQENABLE_SET Interrupt Enable
0x46C0 0030 HDMI_WP_IRQENABLE_CLR Interrupt Disable
0x46C0 0034 HDMI_WP_IRQWAKEEN IRQ Wakeup
0x46C0 0050 HDMI_WP_VIDEO_CFG Configuration of HDMI Wrapper Video
0x46C0 0070 HDMI_WP_CLK Configuration of Clocks
0x46C0 0080 HDMI_WP_AUDIO_CFG Audio Configuration in FIFO
0x46C0 0084 HDMI_WP_AUDIO_CFG2 Audio Configuration of DMA
0x46C0 0088 HDMI_WP_AUDIO_CTRL Audio FIFO Control
0x46C0 008C HDMI_WP_AUDIO_DATA TX Data of FIFO

Table 9-65 HDMI Core System Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x46C0 0400 VND_IDL Vendor ID
0x46C0 0404 VND_IDH Vendor ID
0x46C0 0408 DEV_IDL Device ID
0x46C0 040C DEV_IDH Device ID
0x46C0 0410 DEV_REV Device Revision
0x46C0 0414 SRST Software Reset
0x46C0 0420 SYS_CTRL1 System Control 1
0x46C0 0424 SYS_STAT System Status
0x46C0 0428 SYS_CTRL3 Legacy
0x46C0 0434 DCTL Data Control
0x46C0 043C - 0x46C0 0494 - Reserved
0x46C0 0498 RI_STAT Ri Status
0x46C0 049C RI_CMD Ri Command
0x46C0 04A0 RI_START Ri Line Start
0x46C0 04A4 RI_RX_L Ri From RX
0x46C0 04A8 RI_RX_H Ri From RX
0x46C0 04AC RI_DEBUG Ri Debug
0x46C0 04C8 DE_DLY VIDEO DE Delay
0x46C0 04C8 DE_DLY VIDEO DE Delay
0x46C0 04CC DE_CTRL VIDEO DE Control
0x46C0 04D0 DE_TOP VIDEO DE Top
0x46C0 04D8 DE_CNTL VIDEO DE Count
0x46C0 04DC DE_CNTH VIDEO DE Count
0x46C0 04E0 DE_LINL VIDEO DE Line
0x46C0 04E4 DE_LINH_1 VIDEO DE Line
0x46C0 04E8 HRES_L Video H Resolution
0x46C0 04EC HRES_H Video H Resolution
0x46C0 04F0 VRES_L Video V Resolution
0x46C0 04F4 VRES_H Video V Resolution
0x46C0 04F8 IADJUST Video Interlace Adjustment
0x46C0 04FC POL_DETECT Video SYNC Polarity Detection
0x46C0 0500 HBIT_2HSYNC1 Video Hbit to HSYNC
0x46C0 0504 HBIT_2HSYNC2 Video Hbit to HSYNC
0x46C0 0508 FLD2_HS_OFSTL Video Field2 HSYNC Offset
0x46C0 050C FLD2_HS_OFSTH Video Field2 HSYNC Offset
0x46C0 0510 HWIDTH1 Video HSYNC Length
0x46C0 0514 HWIDTH2 Video HSYNC Length
0x46C0 0518 VBIT_TO_VSYNC Video Vbit to VSYNC
0x46C0 051C VWIDTH Video VSYNC Length
0x46C0 0520 VID_CTRL Video Control
0x46C0 0524 VID_ACEN Video Action Enable
0x46C0 0528 VID_MODE Video Mode1
0x46C0 052C VID_BLANK1 Video Blanking
0x46C0 0530 VID_BLANK2 Video Blanking
0x46C0 0534 VID_BLANK3 Video Blanking
0x46C0 0538 DC_HEADER Deep Color Header
0x46C0 053C VID_DITHER Video Mode2
0x46C0 0540 RGB2XVYCC_CT RGB_2_xvYCC control
0x46C0 0544 R2Y_COEFF_LOW RGB_2_xvYCC Conversion R_2_Y
0x46C0 0548 R2Y_COEFF_UP RGB_2_xvYCC Conversion R_2_Y
0x46C0 054C G2Y_COEFF_LOW RGB_2_xvYCC Conversion G_2_Y
0x46C0 0550 G2Y_COEFF_UP RGB_2_xvYCC Conversion G_2_Y
0x46C0 0554 B2Y_COEFF_LOW RGB_2_xvYCC Conversion B_2_Y
0x46C0 0558 B2Y_COEFF_UP RGB_2_xvYCC Conversion B_2_Y
0x46C0 055C R2CB_COEFF_LOW RGB_2_xvYCC Conversion R_2_Cb
0x46C0 0560 R2CB_COEFF_UP RGB_2_xvYCC Conversion R_2_Cb
0x46C0 0564 G2CB_COEFF_LOW RGB_2_xvYCC Conversion G_2_Cb
0x46C0 0568 G2CB_COEFF_UP RGB_2_xvYCC Conversion G_2_Cb
0x46C0 056C B2CB_COEFF_LOW RGB_2_xvYCC Conversion B_2_Cb
0x46C0 0570 B2CB_COEFF_UP RGB_2_xvYCC Conversion B_2_Cb
0x46C0 0574 R2CR_COEFF_LOW RGB_2_xvYCC Conversion R_2_Cr
0x46C0 0578 R2CR_COEFF_UP RGB_2_xvYCC Conversion R_2_Cr
0x46C0 057C G2CR_COEFF_LOW RGB_2_xvYCC Conversion G_2_Cr
0x46C0 0580 G2CR_COEFF_UP RGB_2_xvYCC Conversion G_2_Cr
0x46C0 0584 B2CR_COEFF_LOW RGB_2_xvYCC Conversion B_2_Cr
0x46C0 0588 B2CR_COEFF_UP RGB_2_xvYCC Conversion B_2_Cr
0x46C0 058C RGB_OFFSET_LOW RGB_2_xvYCC RGB Input Offset
0x46C0 0590 RGB_OFFSET_UP RGB_2_xvYCC RGB Input Offset
0x46C0 0594 Y_OFFSET_LOW RGB_2_xvYCC Conversion Y Output Offset
0x46C0 0598 Y_OFFSET_UP RGB_2_xvYCC Conversion Y Output Offset
0x46C0 059C CBCR_OFFSET_LOW RGB_2_xvYCC Conversion CbCr Output Offset
0x46C0 05A0 CBCR_OFFSET_UP RGB_2_xvYCC Conversion CbCr Output Offset
0x46C0 05C0 INTR_STATE Interrupt State
0x46C0 05C4 INTR1 Interrupt Source
0x46C0 05C8 INTR2 Interrupt Source
0x46C0 05CC INTR3 Interrupt Source
0x46C0 05D0 INTR4 Interrupt Source
0x46C0 05D4 INT_UNMASK1 Interrupt Unmask
0x46C0 05D8 INT_UNMASK2 Interrupt Unmask
0x46C0 05DC INT_UNMASK3 Interrupt Unmask
0x46C0 05E0 INT_UNMASK4 Interrupt Unmask
0x46C0 05E4 INT_CTRL Interrupt Control
0x46C0 0640 XVYCC2RGB_CTL xvYCC_2_RGB Control
0x46C0 0644 Y2R_COEFF_LOW xvYCC_2_RGB Conversion Y_2_R
0x46C0 0648 Y2R_COEFF_UP xvYCC_2_RGB Conversion Y_2_R
0x46C0 064C CR2R_COEFF_LOW xvYCC_2_RGB Conversion Cr_2_R
0x46C0 0650 CR2R_COEFF_UP xvYCC_2_RGB Conversion Cr_2_R
0x46C0 0654 CB2B_COEFF_LOW xvYCC_2_RGB Conversion Cb_2_B
0x46C0 0658 CB2B_COEFF_UP xvYCC_2_RGB Conversion Cb_2_B
0x46C0 065C CR2G_COEFF_LOW xvYCC_2_RGB Conversion Cr_2_G
0x46C0 0660 CR2G_COEFF_UP xvYCC_2_RGB Conversion Cr_2_G
0x46C0 0664 CB2G_COEFF_LOW xvYCC_2_RGB Conversion Cb_2_G
0x46C0 0668 CB2G_COEFF_UP xvYCC_2_RGB Conversion Cb_2_G
0x46C0 066C YOFFSET1_LOW xvYCC_2_RGB Conversion Y Offset
0x46C0 0670 YOFFSET1_UP xvYCC_2_RGB Conversion Y Offset
0x46C0 0674 OFFSET1_LOW xvYCC_2_RGB Conversion Offset1
0x46C0 0678 OFFSET1_MID xvYCC_2_RGB Conversion Offset1
0x46C0 067C OFFSET1_UP xvYCC_2_RGB Conversion Offset1
0x46C0 0680 OFFSET2_LOW xvYCC_2_RGB Conversion Offset2
0x46C0 0684 OFFSET2_UP xvYCC_2_RGB Conversion Offset2
0x46C0 0688 DCLEVEL_LOW xvYCC_2_RGB Conversion DC Level
0x46C0 068C DCLEVEL_UP xvYCC_2_RGB Conversion DC Level
0x46C0 07B0 DDC_MAN DDC I2C Manual
0x46C0 07B4 DDC_ADDR DDC I2C Target Slave Address
0x46C0 07B8 DDC_SEGM DDC I2C Target Segment Address
0x46C0 07BC DDC_OFFSET DDC I2C Target Offset Address
0x46C0 07C0 DDC_COUNT1 DDC I2C Data Count
0x46C0 07C4 DDC_COUNT2 DDC I2C Data Count
0x46C0 07C8 DDC_STATUS DDC I2C Status
0x46C0 07CC DDC_CMD DDC I2C Command
0x46C0 07D0 DDC_DATA DDC I2C Data
0x46C0 07D4 DDC_FIFOCNT DDC I2C FIFO Count
0x46C0 07E4 EPST ROM Status
0x46C0 07E8 EPCM ROM Command

Table 9-66 HDMI IP Core Gamut Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x46C0 0800 GAMUT_HEADER1 Gamut Metadata
0x46C0 0804 GAMUT_HEADER2 Gamut Metadata
0x46C0 0808 GAMUT_HEADER3 Gamut Metadata
0x46C0 080C - 0x46C0 0878
(0x4 byte increments)
GAMUT_DBYTE__0 - GAMUT_DBYTE__27 Gamut Metadata

Table 9-67 HDMI IP Core Audio Video Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x46C0 0904 ACR_CTRL ACR Control
0x46C0 0908 FREQ_SVAL ACR Audio Frequency
0x46C0 090C N_SVAL1 ACR N Software Value
0x46C0 0910 N_SVAL2 ACR N Software Value
0x46C0 0914 N_SVAL3 ACR N Software Value
0x46C0 0918 CTS_SVAL1 ACR CTS Software Value
0x46C0 091C CTS_SVAL2 ACR CTS Software Value
0x46C0 0920 CTS_SVAL3 ACR CTS Software Value
0x46C0 0924 CTS_HVAL1 ACR CTS Hardware Value
0x46C0 0928 CTS_HVAL2 ACR CTS Hardware Value
0x46C0 092C CTS_HVAL3 ACR CTS Hardware Value
0x46C0 0950 AUD_MODE Audio In Mode
0x46C0 0954 SPDIF_CTRL Audio In SPDIF Control
0x46C0 0960 HW_SPDIF_FS Audio In SPDIF Extracted Fs and Length
0x46C0 0964 SWAP_I2S Audio In I2S Channel Swap
0x46C0 096C SPDIF_ERTH Audio Error Threshold
0x46C0 0970 I2S_IN_MAP Audio In I2S Data In Map
0x46C0 0974 I2S_IN_CTRL Audio In I2S Control
0x46C0 0978 I2S_CHST0 Audio In I2S Channel Status
0x46C0 097C I2S_CHST1 Audio In I2S Channel Status
0x46C0 0980 I2S_CHST2 Audio In I2S Channel Status
0x46C0 0984 I2S_CHST4 Audio In I2S Channel Status
0x46C0 0988 I2S_CHST5 Audio In I2S Channel Status
0x46C0 098C ASRC Audio Sample Rate Conversion
0x46C0 0990 I2S_IN_LEN Audio I2S Input Length
0x46C0 09BC HDMI_CTRL HDMI Control
0x46C0 09C0 AUDO_TXSTAT Audio Path Status
0x46C0 09CC AUD_PAR_BUSCLK_1 Audio Input Data Rate Adjustment
0x46C0 09D0 AUD_PAR_BUSCLK_2 Audio Input Data Rate Adjustment
0x46C0 09D4 AUD_PAR_BUSCLK_3 Audio Input Data Rate Adjustment
0x46C0 09F0 TEST_TXCTRL Test Control
0x46C0 09F4 DPD Diagnostic Power Down
0x46C0 09F8 PB_CTRL1 Packet Buffer Control 1
0x46C0 09FC PB_CTRL2 Packet Buffer Control 2
0x46C0 0A00 AVI_TYPE Packet
0x46C0 0A04 AVI_VERS Packet
0x46C0 0A08 AVI_LEN Packet
0x46C0 0A0C AVI_CHSUM Packet
0x46C0 0A10 - 0x46C0 0A48
(0x4 byte increments)
AVI_DBYTE__0 - AVI_DBYTE__14 Packet
0x46C0 0A80 SPD_TYPE SPD InfoFrame
0x46C0 0A84 SPD_VERS SPD InfoFrame
0x46C0 0A88 SPD_LEN SPD InfoFrame
0x46C0 0A8C SPD_CHSUM SPD InfoFrame
0x46C0 0A90 - 0x46C0 0AF8
(0x4 byte increments)
SPD_DBYTE__0 - SPD_DBYTE__26 SPD InfoFrame
0x46C0 0B00 AUDIO_TYPE Audio InfoFrame
0x46C0 0B04 AUDIO_VERS Audio InfoFrame
0x46C0 0B08 AUDIO_LEN Audio InfoFrame
0x46C0 0B0C AUDIO_CHSUM Audio InfoFrame
0x46C0 0B10 - 0x46C0 0B34
(0x4 byte increments)
AUDIO_DBYTE__0 - AUDIO_DBYTE__9 Audio InfoFrame
0x46C0 0B80 MPEG_TYPE MPEG InfoFrame
0x46C0 0B84 MPEG_VERS MPEG InfoFrame
0x46C0 0B88 MPEG_LEN MPEG InfoFrame
0x46C0 0B8C MPEG_CHSUM MPEG InfoFrame
0x46C0 0B90 - 0x46C0 0BF8
(0x4 byte increments)
MPEG_DBYTE__0 - MPEG_DBYTE__26 MPEG InfoFrame
0x46C0 0C00 - 0x46C0 0C78
(0x4 byte increments)
GEN_DBYTE__0 - GEN_DBYTE__30 Generic Packet
0x46C0 0C7C CP_BYTE1 General Control Packet
0x46C0 0C80 - 0x46C0 0CF8
(0x4 byte increments)
GEN2_DBYTE__0 - GEN2_DBYTE__30 Generic Packet 2
0x46C0 0CFC CEC_ADDR_ID CEC Slave ID

Table 9-68 HDMI IP Core CEC Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x46C0 0D00 CEC_DEV_ID CEC Device ID
0x46C0 0D04 CEC_SPEC CEC Specification
0x46C0 0D08 CEC_SUFF CEC Specification Suffix
0x46C0 0D0C CEC_FW CEC Firmware Revision
0x46C0 0D10 CEC_DBG_0 CEC Debug 0
0x46C0 0D14 CEC_DBG_1 CEC Debug 1
0x46C0 0D18 CEC_DBG_2 CEC Debug 2
0x46C0 0D1C CEC_DBG_3 CEC Debug 3
0x46C0 0D20 CEC_TX_INIT CEC Tx Initialization
0x46C0 0D24 CEC_TX_DEST CEC Tx Destination
0x46C0 0D38 CEC_SETUP CEC Set Up
0x46C0 0D3C CEC_TX_COMMAND CEC Tx Command
0x46C0 0D40 - 0x46C0 0D78
(0x4 byte increments)
CEC_TX_OPERAND__0 - CEC_TX_OPERAND__14 CEC Tx Operand
0x46C0 0D7C CEC_TRANSMIT_DATA CEC Transmit Data
0x46C0 0D88 CEC_CA_7_0 CEC Capture ID0
0x46C0 0D8C CEC_CA_15_8 CEC Capture ID0
0x46C0 0D90 CEC_INT_ENABLE_0 CEC Interrupt Enable 0
0x46C0 0D94 CEC_INT_ENABLE_1 CEC Interrupt Enable 1
0x46C0 0D98 CEC_INT_STATUS_0 CEC Interrupt Status 0
0x46C0 0D9C CEC_INT_STATUS_1 CEC Interrupt Status 1
0x46C0 0DB0 CEC_RX_CONTROL CEC RX Control
0x46C0 0DB4 CEC_RX_COUNT CEC Rx Count
0x46C0 0DB8 CEC_RX_CMD_HEADER CEC Rx Command Header
0x46C0 0DBC CEC_RX_COMMAND CEC Rx Command
0x46C0 0DC0 - 0x46C0 0DF8
(0x4 byte increments)
CEC_RX_OPERAND__0 - CEC_RX_OPERAND__14 CEC Rx Operand

Table 9-69 HDMI PHY Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x4812 2004 TMDS_CNTL2 TMDS Control
0x4812 2008 TMDS_CNTL3 TMDS Control
0x4812 200C BIST_CNTL BIST Control
0x4812 2020 TMDS_CNTL9 TMDS Control

9.10 High-Definition Video Processing Subsystem (HDVPSS)

The device High-Definition Video Processing Subsystem (HDVPSS) provides a video input interface for external imaging peripherals (that is, image sensors, video decoders, and others) and a video output interface for display devices, such as analog SDTV displays, analog and digital HDTV displays, and digital LCD panels. It includes HD and SD video encoders, and an HDMI transmitter interface.

The device HDVPSS features include:

  • High quality (HD) and medium quality (SD) display processing pipelines with de-interlacing, scaling, noise reduction, alpha blending, chroma keying, color space conversion, flicker filtering, and pixel format conversion.
  • HD and SD compositor features for PIP support.
  • Format conversions (up to 1080p 60 Hz) include scan format conversion, scan rate conversion, aspect-ratio conversion, and frame size conversion.
  • Supports additional video processing capabilities by using the subsystem's memory-to-memory feature.
  • Two parallel video processing pipelines support HD (up to 1080p60) and SD (NTSC and PAL) simultaneous outputs.
    • HD analog component output with OSD and embedded timing codes (BT.1120)
      • 3-channel HD-DAC with 12-bit resolution.
      • External HSYNC and VSYNC signals available on silicon revision 2.x devices. For more details, see below.
    • SD analog output with OSD with embedded timing codes (BT.656)
      • Simultaneous component, S-video and composite
      • 4-channel SD-DAC with 10-bit resolution
      • Options available to support MacroVision and CGMS-A (contact local TI Sales rep for information).
    • Digital HDMI 1.3a compliant transmitter (for details, see Section 9.9, High-Definition Multimedia Interface (HDMI)).
  • Up to two (one 16-bit, 24-bit, 30-bit and one 16-bit) digital video outputs (up to 165 MHz).
    • VOUT[0] can output up to 30-bit video and supports RGB, YUV444, Y and C and BT.656 modes.
    • VOUT[1] can output up to 16-bit video and supports Y and C and BT.656 modes.
  • Two (one 16-bit, 24-bit and one 16-bit) independently configurable external video input capture ports (up to 165 MHz).
    • 16-bit and 24-bit HD digital video input or dual clock independent 8-bit SD inputs on each capture port.
      • VIN[0] can accept single-channel 16-bit, 24-bit (YCbCr and RGB) video or dual-channel 8-bit (YCbCr) video.
      • VIN[1] can accept single-channel 16-bit (YCbCr) video or dual-channel 8-bit (YCbCr) video.
    • Embedded sync and external sync modes are supported for all input configurations.
    • De-multiplexing of both pixel-to-pixel and line-to-line multiplexed streams, effectively supporting up to 16 simultaneous SD inputs with a glueless interface to an external multiplexer such as the TVP5158.
    • Additional features include: programmable color space conversion, scaler and chroma downsampler, ancillary VANC and VBI data capture (decoded by software), noise reduction.
  • Availability of a combination of these digital video input and output port configurations, control signals for multiple 8-bit ports, as well as separate synchronization signals is limited by the device pin multiplexing (for details, see Section 6.5). The following video inputs and outputs are not multiplexed and are always available:
    • SD DAC composite, S-video, component out
    • HD DAC component out
    • HDMI output (same as VOUT[1])
    • 16-bit VOUT[0] (embedded sync)
    • Single 16-bit, dual 8-bit VIN[0] (embedded sync).
  • Graphics features:
    • Three independently-generated graphics layers.
    • Each supports full-screen resolution graphics in HD, SD or both.
    • Up and down scaler optimized for graphics.
    • Global and pixel-level alpha blending supported.
  • Discrete external HSYNC and VSYNC signals for the HD-DAC are available on silicon revision 2.x devices. These signals are mapped to the following pins (for details, see Section 4.2.20):
    • HSYNC - AR5, AT9, AR8
    • VSYNC - AL5, AP9, AL9
    • The functionality of these pins is set using the SPARE_CTRL0 register (address: 0x4814 0724). Figure 9-67 and Table 9-70 describe the SPARE_CTRL0 register.

      Note: When changing this register, read original value and write back same value in Reserved fields.

      For example, these are the steps required to use the pins AR8 and AL9 as the DAC_HSYNC and VSYNC signals:

      1. Set the PINCTRLx registers for AR8 and AL9 as follows:
        • 0x4814 0894 = 0x00000001
        • 0x4814 0898 = 0x00000001
      2. Select analog VENC sync out option as follows:
        • 0x4814 0724 = 0x00000004

31 3 2 1 0
Reserved SPR_CTL0_2 SPR_CTL0_1 Rsvd
Figure 9-67 SPARE_CTRL0 Register

Table 9-70 SPARE_CTRL0 Register Field Descriptions

Bit Field Value Description
31:3 Reserved 0 Reserved
2 SPR_CTL0_2 To Select DAC or VOUT[0] Source Signals
0 Selects VOUT[0]_AVID and VOUT[0]_FLD
1 Selects DAC_HSYNC and DAC_VSYNC
1 SPR_CTL0_1 To Select DAC or VOUT[1] Source Signals
0 Selects VOUT[1]_HSYNC and VOUT[1]_VSYNC
1 Selects DAC_HSYNC and DAC_VSYNC
0 Reserved 0 Reserved

For more detailed information on specific features, see the HDVPSS chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.10.1 HDVPSS Electrical Data and Timing

Table 9-71 Timing Requirements for HDVPSS Input

(see Figure 9-68 and Figure 9-69)
NO. MIN MAX UNIT
VIN[x]A_CLK
1 tc(CLK) Cycle time, VIN[x]A_CLK 6.06(1) ns
2 tw(CLKH) Pulse duration, VIN[x]A_CLK high (45% of tc) 2.73 ns
3 tw(CLKH) Pulse duration, VIN[x]A_CLK low (45% of tc) 2.73 ns
7 tt(CLK) Transition time, VIN[x]A_CLK (10%-90%) 2.64 ns
4 tsu(DE-CLK) Input setup time, control valid to VIN[x]A_CLK high 3.75 ns
tsu(VSYNC-CLK)
tsu(FLD-CLK)
tsu(HSYNC-CLK)
tsu(D-CLK) Input setup time, data valid to VIN[x]A_CLK high 3.75
5 th(CLK-DE) Input hold time, control valid from VIN[x]A_CLK high 0 (2) ns
th(CLK-VSYNC)
th(CLK-FLD)
th(CLK-HSYNC)
th(CLK-D) Input hold time, data valid from VIN[x]A_CLK high 0 (2)
VIN[x]B_CLK
1 tc(CLK) Cycle time, VIN[x]B_CLK 6.06(1) ns
2 tw(CLKH) Pulse duration, VIN[x]B_CLK high (45% of tc) 2.73 ns
3 tw(CLKH) Pulse duration, VIN[x]B_CLK low (45% of tc) 2.73 ns
7 tt(CLK) Transition time, VIN[x]B_CLK (10%-90%) 2.64 ns
4 tsu(DE-CLK) Input setup time, control valid to VIN[x]B_CLK high 3.75 ns
tsu(VSYNC-CLK)
tsu(FLD-CLK)
tsu(HSYNC-CLK)
tsu(D-CLK) Input setup time, data valid to VIN[x]B_CLK high 3.75
5 th(CLK-DE) Input hold time, control valid from VIN[x]B_CLK high 0 (2) ns
th(CLK-VSYNC)
th(CLK-FLD)
th(CLK-HSYNC)
th(CLK-D) Input hold time, data valid from VIN[x]B_CLK high 0 (2)
(1) For maximum frequency of 165 MHz.
(2) When interfacing to a device with a minimum delay time of 0 ns, propagation delay of the data traces must be bigger than that of the clock traces.

Table 9-72 Switching Characteristics Over Recommended Operating Conditions for HDVPSS Output

(see Figure 9-68 and Figure 9-70)
NO. PARAMETER MIN MAX UNIT
1 tc(CLK) Cycle time, VOUT[x]_CLK 6.06(1) ns
2 tw(CLKH) Pulse duration, VOUT[x]_CLK high (45% of tc) 2.73 ns
3 tw(CLKL) Pulse duration, VOUT[x]_CLK low (45% of tc) 2.73 ns
7 tt(CLK) Transition time, VOUT[x]_CLK (10%-90%) 2.64 ns
6 td(CLK-AVID) Delay time, VOUT[x]_CLK to control valid 1.64(2) 4.85(3) ns
td(CLK-FLD)
td(CLK-VSYNC)
td(CLK-HSYNC)
td(CLK-RCR) Delay time, VOUT[0]_CLK to data valid 1.64(2) 4.85(3) ns
td(CLK-GYYC)
td(CLK-BCBC)
td(CLK-YYC) Delay time, VOUT[1]_CLK to data valid
td(CLK-C)
(1) For maximum frequency of 165 MHz.
(2) Min Delay Time = Tc * 0.27, where Tc is the clock cycle time. Note: When interfacing to devices where setup and hold margins are minimal, care must be taken to match board trace length delay for clock and data signals.
(3) Max Delay Time = Tc * 0.80, where Tc is the clock cycle time. Note: When interfacing to devices where setup and hold margins are minimal, care must be taken to match board trace length delay for clock and data signals.
AM3894 AM3892 td_hdvpss_clk_sprs614.gifFigure 9-68 HDVPSS Clock Timing
AM3894 AM3892 td_hdvpss_input_sprs614.gifFigure 9-69 HDVPSS Input Timing
AM3894 AM3892 td_hdvpss_output_sprs614.gifFigure 9-70 HDVPSS Output Timing

9.10.2 Video DAC Guidelines and Electrical Data and Timing

The device's analog video DAC outputs are designed to drive a 37.5-Ω load. Figure 9-71 describes a typical circuit that permits connecting the analog video output from the device to standard 75-Ω impedance video systems. The device requires the use of a buffer to drive the actual video outputs, so one solution is to use a video amplifier with integrated buffer and internal filter, such as the Texas Instruments THS7360, which provides a complete solution for the typical output circuit shown in Figure 9-71.

AM3894 AM3892 dac_out_sprs614.gifFigure 9-71 Typical Output Circuits for Analog Video from DACs

During board design, the onboard traces and parasitics must be matched for the channel. The video DAC output pin (IOUTx) is a very high-frequency analog signal and must be routed with extreme care. As a result, the path of this signal must be as short as possible, and as isolated as possible from other interfering signals. The load resistor and amplifier or buffer should be placed close together and as close as possible to the device pins. Other layout guidelines include:

  • Take special care to bypass the DAC power supply pin with a capacitor.
  • Place the 75-Ω resistor as close as possible (<0.5") to the amplifier or buffer (THS7360) output pin.
  • To maintain a high quality video signal, 75-Ω (±10%) characteristic impedance traces should be used after the 75-Ω series resistor.
  • Minimize input trace lengths to the device to reduce parasitic capacitance.
  • Include solid ground return paths.
  • Match trace lengths as close as possible within a video format group (that is, Y, Pb, and Pr for component output, and Y and C for s-video output should match each other).

For additional video DAC design guidelines, see the HDVPSS chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

Table 9-73 DAC Specifications

PARAMETER CONDITIONS MIN TYP MAX UNIT
Resolution HD DACs 12 Bits
SD DACs 10 Bits
DC Accuracy - HD DACs
Integral Non-Linearity (INL), best fit HD DACs 1.5 LSB
SD DACs 1.0 LSB
Differential Non-Linearity (DNL) HD DACs 1.0 LSB
SD DACs 0.5 LSB
Analog Output
Output Resistor (RLOAD) HD and SD DACs -1% 37.5 +1% Ω
Full-Scale Output Current (IFS) HD and SD DACs
RLOAD
13.3 mA
Output Compliance Range HD and SD DACs
IFS = 13.3 mA,
RLOAD = 37.5 Ω
0 Vref V
Zero Scale Offset Error (ZSET) HD and SD DACs 0.5 LSB
Gain Error HD and SD DACs -10 10 %
Channel matching HD and SD DACs 2 %
Recommended External Amplification HD DACs 4.5 V/V
SD DACs 5.6 V/V
Reference
Reference Voltage Range (VREF) Input with External Reference -5% 0.5 +5% V
Full-Scale Current Adjust Resistors RBIAS_HD and RBIAS_SD -1% 1.2 +1%
Dynamic Specifications
Output Update Rate (FCLK) HD DACs at 1080i60 74.25 MHz
HD DACs at 1080p60 148.5 MHz
SD DACs 27 54 MHz
Signal Bandwidth HD DACs at 1080i60 30 MHz
HD DACs at 1080p60 60 MHz
SD DACs 6 MHz
Spurious - Free Dynamic Range (SFDR) HD DACs at 1080i60
FCLK = 74.25 MHz,
FOUT = 30 MHz
60 dB
HD DACs at 1080p60
FCLK = 148.5 MHz,
FOUT = 60 MHz
60 dB
SD DACs
FCLK = 27 MHz / 54 MHz, FOUT = 6 MHz
60 dB

9.11 Inter-Integrated Circuit (I2C)

The device includes two inter-integrated circuit (I2C) modules which provide an interface to other devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus™) specification version 2.1. External components attached to this 2-wire serial bus can transmit or receive 8-bit data to or from the device through the I2C module. The I2C port does not support CBUS compatible devices.

The I2C port supports the following features:

  • Compatible with Philips I2C Specification Revision 2.1 (January 2000)
  • Standard and fast modes from 10 - 400 Kbps (no fail-safe IO buffers)
  • Noise filter to remove noise 50 ns or less
  • Seven- and ten-bit device addressing modes
  • Multimaster transmitter or slave receiver mode
  • Multimaster receiver or slave transmitter mode
  • Combined master transmit/receive and receive or transmit modes
  • Two DMA channels, one interrupt line
  • Built-in FIFO (32 byte) for buffered read or write.

For more detailed information on the I2C peripheral, see the I2C chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.11.1 I2C Peripheral Register Descriptions

Table 9-74 I2C Registers

I2C0 HEX ADDRESS I2C1 HEX ADDRESS ACRONYM REGISTER NAME
0x4802 8000 0x4802 A000 I2C_REVNB_LO Module Revision (LOW BYTES)
0x4802 8004 0x4802 A004 I2C_REVNB_HI Module Revision (HIGH BYTES)
0x4802 8010 0x4802 A010 I2C_SYSC System configuration
0x4802 8020 0x4802 A020 I2C_EOI I2C End of Interrupt
0x4802 8024 0x4802 A024 I2C_IRQSTATUS_RAW I2C Status Raw
0x4802 8028 0x4802 A028 I2C_IRQSTATUS I2C Status
0x4802 802C 0x4802 A02C I2C_IRQENABLE_SET I2C Interrupt Enable Set
0x4802 8030 0x4802 A030 I2C_IRQENABLE_CLR I2C Interrupt Enable Clear
0x4802 8034 0x4802 A034 I2C_WE I2C Wakeup Enable
0x4802 8038 0x4802 A038 I2C_DMARXENABLE_SET Receive DMA Enable Set
0x4802 803C 0x4802 A03C I2C_DMATXENABLE_SET Transmit DMA Enable Set
0x4802 8040 0x4802 A040 I2C_DMARXENABLE_CLR Receive DMA Enable Clear
0x4802 8044 0x4802 A044 I2C_DMATXENABLE_CLR Transmit DMA Enable Clear
0x4802 8048 0x4802 A048 I2C_DMARXWAKE_EN Receive DMA Wakeup
0x4802 804C 0x4802 A04C I2C_DMATXWAKE_EN Transmit DMA Wakeup
0x4802 8090 0x4802 A090 I2C_SYSS System Status
0x4802 8094 0x4802 A094 I2C_BUF Buffer Configuration
0x4802 8098 0x4802 A098 I2C_CNT Data Counter
0x4802 809C 0x4802 A09C I2C_DATA Data Access
0x4802 80A4 0x4802 A0A4 I2C_CON I2C Configuration
0x4802 80A8 0x4802 A0A8 I2C_OA I2C Own Address
0x4802 80AC 0x4802 A0AC I2C_SA I2C Slave Address
0x4802 80B0 0x4802 A0B0 I2C_PSC I2C Clock Prescaler
0x4802 80B4 0x4802 A0B4 I2C_SCLL I2C SCL Low Time
0x4802 80B8 0x4802 A0B8 I2C_SCLH I2C SCL High Time
0x4802 80BC 0x4802 A0BC I2C_SYSTEST System Test
0x4802 80C0 0x4802 A0C0 I2C_BUFSTAT I2C Buffer Status
0x4802 80C4 0x4802 A0C4 I2C_OA1 I2C Own Address 1
0x4802 80C8 0x4802 A0C8 I2C_OA2 I2C Own Address 2
0x4802 80CC 0x4802 A0CC I2C_OA3 I2C Own Address 3
0x4802 80D0 0x4802 A0D0 I2C_ACTOA Active Own Address
0x4802 80D4 0x4802 A0D4 I2C_SBLOCK I2C Clock Blocking Enable

9.11.2 I2C Electrical Data and Timing

Table 9-75 Timing Requirements for I2C Input

(see Figure 9-72)
NO. MIN MAX UNIT
1 tc(SCL) Cycle time, SCL Standard_IC 10 µs
Fast_IC 2.5
2 tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated Start condition) Standard_IC 4.7 µs
Fast_IC 0.6
3 th(SDAL-SCLL) Hold time, SCL low after SDA low (for a Start and a repeated Start condition) Standard_IC 4 µs
Fast_IC 0.6
4 tw(SCLL) Pulse duration, SCL low Standard_IC 4.7 µs
Fast_IC 1.3
5 tw(SCLH) Pulse duration, SCL high Standard_IC 4 µs
Fast_IC 0.6
6 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high Standard_IC 250 ns
Fast_IC 100
7 th(SCLL-SDA) Hold time, SDA valid after SCL low (for I2C bus devices) Standard_IC 0 3.45 µs
Fast_IC 0 0.9
8 tw(SDAH) Pulse duration, SDA high between Stop and Start conditions Standard_IC 4.7 µs
Fast_IC 1.3
13 tsu(SCLH-SDAH) Setup time, high before SDA high (for Stop condition) Standard_IC 4 µs
Fast_IC 0.6
14 tw(SDA) Pulse duration, spike (must be suppressed) Fast_IC 0 50 ns
tw(SCL) Fast_IC 0 50
AM3894 AM3892 td_i2c_rcv_sprs614.gifFigure 9-72 I2C Receive Timing

Table 9-76 Switching Characteristics Over Recommended Operating Conditions for I2C Output

(see Figure 9-73)
NO. PARAMETER MIN MAX UNIT
16 tc(SCL) Cycle time, SCL Standard_OC 10 µs
Fast_OC 2.5
17 tsu(SCLH-SDAL) Setup Time, SCL high before SDA low (for a repeated START condition) Standard_OC 4.7 µs
Fast_OC 0.6
18 th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a repeated START condition Standard_OC 4 µs
Fast_OC 0.6
19 tw(SCLL) Pulse duration, SCL low Standard_OC 4.7 µs
Fast_OC 1.3
20 tw(SCLH) Pulse duration, SCL high Standard_OC 4 µs
Fast_OC 0.6
21 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high Standard_OC 250 ns
Fast_OC 100
22 th(SCLL-SDA) Hold time, SDA valid after SCL low (For IIC bus devices) Standard_OC 0 3.45 µs
Fast_OC 0 0.9
23 tw(SDAH) Pulse duration, SDA high between STOP and START conditions Standard_OC 4.7 µs
Fast_OC 1.3
28 tsu(SCLH-SDAH) Setup time, high before SDA high (for STOP condition) Standard_OC 4 µs
Fast_OC 0.6
AM3894 AM3892 td_i2c_xmit_sprs614.gifFigure 9-73 I2C Transmit Timing

9.12 Multichannel Audio Serial Port (McASP)

The multichannel audio serial port (McASP) functions as a general-purpose audio serial port optimized for the needs of multichannel audio applications. The McASP is useful for time-division multiplexed (TDM) stream, Inter-Integrated Sound (I2S) protocols, and intercomponent digital audio interface transmission (DIT).

9.12.1 McASP Device-Specific Information

The device includes three multichannel audio serial port (McASP) interface peripherals (McASP0, McASP1, and McASP2). The McASP module consists of a transmit and receive section. These sections can operate completely independently with different data formats, separate master clocks, bit clocks, and frame syncs or, alternatively, the transmit and receive sections may be synchronized. The McASP module also includes shift registers that may be configured to operate as either transmit data or receive data. The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM) synchronous serial format or in a digital audio interface (DIT) format where the bit stream is encoded for SPDIF, AES-3, IEC-60958, CP-430 transmission. The receive section of the McASP peripheral supports the TDM synchronous serial format.

The McASP module can support one transmit data format (either a TDM format or DIT format) and one receive format at a time. All transmit shift registers use the same format and all receive shift registers use the same format; however, the transmit and receive formats need not be the same. Both the transmit and receive sections of the McASP also support burst mode, which is useful for non-audio data (for example, passing control information between two devices).

The McASP peripheral has additional capability for flexible clock generation and error detection and handling, as well as error management.

The device McASP0 module has six serial data pins, while McASP1 and McASP2 are limited to two serial data pins each.

The McASP FIFO size is 256 bytes and two DMA and two interrupt requests are supported. Buffers are used transparently to better manage DMA, which can be leveraged to manage data flow more efficiently.

For more detailed information on and the functionality of the McASP peripheral, see the McASP chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.12.2 McASP0, McASP1, and McASP2 Peripheral Register Descriptions

Table 9-77 McASP0, McASP1, and McASP2 Registers

MCASP0 ADDRESS MCASP1 ADDRESS MCASP2 ADDRESS ACRONYM REGISTER NAME
0x4803 8000 0x4803 C000 0x4805 0000 PID Peripheral ID
0x4803 8004 0x4803 C004 0x4805 0004 PWRIDLE
SYSCONFIG
Power Idle SYSCONFIG
0x4803 8010 0x4803 C010 0x4805 0010 PFUNC Pin Function
0x4803 8014 0x4803 C014 0x4805 0014 PDIR Pin Direction
0x4803 8018 0x4803 C018 0x4805 0018 PDOUT Pin Data Out
0x4803 801C 0x4803 C01C 0x4805 001C PDIN Pin Data Input (Read)
Read returns pin data input
PDSET Pin Data Set (Write)
Writes effect pin data set (alternate write address PDOUT)
0x4803 8020 0x4803 C020 0x4805 0020 PDCLR Pin Data Clear
0x4803 8044 0x4803 C044 0x4805 0044 GBLCTL Global Control
0x4803 8048 0x4803 C048 0x4805 0048 AMUTE Mute Control
0x4803 804C 0x4803 C04C 0x4805 004C LBCTL Loop-Back Test Control
0x4803 8050 0x4803 C050 0x4805 0050 TXDITCTL Transmit DIT Mode Control
0x4803 8060 0x4803 C060 0x4805 0060 GBLCTLR Alias of GBLCTL containing only receiver reset bits; allows transmit to be reset independently from receive
0x4803 8064 0x4803 C064 0x4805 0064 RXMASK Receiver Bit Mask
0x4803 8068 0x4803 C068 0x4805 0068 RXFMT Receive Bitstream Format
0x4803 806C 0x4803 C06C 0x4805 006C RXFMCTL Receive Frame Sync Control
0x4803 8070 0x4803 C070 0x4805 0070 ACLKRCTL Receive Clock Control
0x4803 8074 0x4803 C074 0x4805 0074 AHCLKRCTL High Frequency Receive Clock Control
0x4803 8078 0x4803 C078 0x4805 0078 RXTDM Receive TDM Slot 0-31
0x4803 807C 0x4803 C07C 0x4805 007C EVTCTLR Receiver Interrupt Control
0x4803 8080 0x4803 C080 0x4805 0080 RXSTAT Status Receiver
0x4803 8084 0x4803 C084 0x4805 0084 RXTDMSLOT Current Receive TDM Slot
0x4803 8088 0x4803 C088 0x4805 0088 RXCLKCHK Receiver Clock Check Control
0x4803 808C 0x4803 C08C 0x4805 008C REVTCTL Receiver DMA Event Control
0x4803 80A0 0x4803 C0A0 0x4805 00A0 GBLCTLX Alias of GBLCTL containing only transmit reset bits; allows transmit to be reset independently from receive
0x4803 80A4 0x4803 C0A4 0x4805 00A4 TXMASK Transmit Format Unit Bit Mask
0x4803 80A8 0x4803 C0A8 0x4805 00A8 TXFMT Transmit Bitstream Format
0x4803 80AC 0x4803 C0AC 0x4805 00AC TXFMCTL Transmit Frame Sync Control
0x4803 80B0 0x4803 C0B0 0x4805 00B0 ACLKXCTL Transmit Clock Control
0x4803 80B4 0x4803 C0B4 0x4805 00B4 AHCLKXCTL High Frequency Transmit Clock Control
0x4803 80B8 0x4803 C0B8 0x4805 00B8 TXTDM Transmit TDM Slot 0-31
0x4803 80BC 0x4803 C0BC 0x4805 00BC EVTCTLX Transmitter Interrupt Control
0x4803 80C0 0x4803 C0C0 0x4805 00C0 TXSTAT Status Transmitter
0x4803 80C4 0x4803 C0C4 0x4805 00C4 TXTDMSLOT Current Transmit TDM Slot
0x4803 80C8 0x4803 C0C8 0x4805 00C8 TXCLKCHK Transmit Clock Check Control
0x4803 80CC 0x4803 C0CC 0x4805 00CC XEVTCTL Transmitter DMA Control
0x4803 80D0 0x4803 C0D0 0x4805 00D0 CLKADJEN One-shot Clock Adjust Enable
0x4803 8100 0x4803 C100 0x4805 0100 DITCSRA0 Left (Even TDM Slot) Channel Status Register File
0x4803 8104 0x4803 C104 0x4805 0104 DITCSRA1 Left (Even TDM Slot) Channel Status Register File
0x4803 8108 0x4803 C108 0x4805 0108 DITCSRA2 Left (Even TDM Slot) Channel Status Register File
0x4803 810C 0x4803 C10C 0x4805 010C DITCSRA3 Left (Even TDM Slot) Channel Status Register File
0x4803 8110 0x4803 C110 0x4805 0110 DITCSRA4 Left (Even TDM Slot) Channel Status Register File
0x4803 8114 0x4803 C114 0x4805 0114 DITCSRA5 Left (Even TDM Slot) Channel Status Register File
0x4803 8118 0x4803 C118 0x4805 0118 DITCSRB0 Right (Odd TDM Slot) Channel Status Register File
0x4803 811C 0x4803 C11C 0x4805 011C DITCSRB1 Right (Odd TDM Slot) Channel Status Register File
0x4803 8120 0x4803 C120 0x4805 0120 DITCSRB2 Right (Odd TDM Slot) Channel Status Register File
0x4803 8124 0x4803 C124 0x4805 0124 DITCSRB3 Right (Odd TDM Slot) Channel Status Register File
0x4803 8128 0x4803 C128 0x4805 0128 DITCSRB4 Right (Odd TDM Slot) Channel Status Register File
0x4803 812C 0x4803 C12C 0x4805 012C DITCSRB5 Right (Odd TDM Slot) Channel Status Register File
0x4803 8130 0x4803 C130 0x4805 0130 DITUDRA0 Left (Even TDM Slot) User Data Register File
0x4803 8134 0x4803 C134 0x4805 0134 DITUDRA1 Left (Even TDM Slot) User Data Register File
0x4803 8138 0x4803 C138 0x4805 0138 DITUDRA2 Left (Even TDM Slot) User Data Register File
0x4803 813C 0x4803 C13C 0x4805 013C DITUDRA3 Left (Even TDM Slot) User Data Register File
0x4803 8140 0x4803 C140 0x4805 0140 DITUDRA4 Left (Even TDM Slot) User Data Register File
0x4803 8144 0x4803 C144 0x4805 0144 DITUDRA5 Left (Even TDM Slot) User Data Register File
0x4803 8148 0x4803 C148 0x4805 0148 DITUDRB0 Right (Odd TDM Slot) User Data Register File
0x4803 814C 0x4803 C14C 0x4805 014C DITUDRB1 Right (Odd TDM Slot) User Data Register File
0x4803 8150 0x4803 C150 0x4805 0150 DITUDRB2 Right (Odd TDM Slot) User Data Register File
0x4803 8154 0x4803 C154 0x4805 0154 DITUDRB3 Right (Odd TDM Slot) User Data Register File
0x4803 8158 0x4803 C158 0x4805 0158 DITUDRB4 Right (Odd TDM Slot) User Data Register File
0x4803 815C 0x4803 C15C 0x4805 015C DITUDRB5 Right (Odd TDM Slot) User Data Register File
0x4803 8180 -
0x4803 81BC
0x4803 C180 -
0x4803 C1BC
0x4805 0180 - 0x4805 01BC XRSRCTL0 - XRSRCTL15 Serializer 0 Control - Serializer 15 Control
0x4803 8200 -
0x4803 8 23C
0x4803 C200 -
0x4803 C23C
0x4805 0200 - 0x4805 023C TXBUF0 - TXBUF15 Transmit Buffer for Serializer 0 - Transmit Buffer for Serializer 15
0x4803 8280 -
0x4803 82BC
0x4803 C280 -
0x4803 C2BC
0x4805 0280 - 0x4805 02BC RXBUF0 - RXBUF15 Receive Buffer for Serializer 0 - Receive Buffer for Serializer 15
0x4803 9000 0x4803 D000 0x4805 1000 BUFFER_CFGRD_WFIFOCTL Write FIFO Control
0x4803 9004 0x4803 D004 0x4805 1004 BUFFER_CFGRD_WFIFOSTS Write FIFO Status
0x4803 9008 0x4803 D008 0x4805 1008 BUFFER_CFGRD_RFIFOCTL Read FIFO Control
0x4803 900C 0x4803 D00C 0x4805 100C BUFFER_CFGRD_RFIFOSTS Read FIFO Status

Table 9-78 McASP Registers Accessed Through DAT Port

HEX ADDRESS REGISTER NAME McASP0 BYTE ADDRESS McASP0 BYTE ADDRESS McASP0 BYTE ADDRESS REGISTER DESCRIPTION
Read Accesses RBUF 4600 0000 4640 0000 4680 0000 Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit serializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Reads from DMA port only if XBUSEL = 0 in XFMT.
Write Accesses XBUF 4600 0000 4640 0000 4680 0000 Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMA port only if RBUSEL = 0 in RFMT.

9.12.3 McASP Electrical Data and Timing

Table 9-79 Timing Requirements for McASP(1)

(see Figure 9-74)
NO. MIN MAX UNIT
1 tc(AHCLKRX) Cycle time, MCA[x]_AHCLKR or MCA[x]_AHCLKX 20 ns
2 tw(AHCLKRX) Pulse duration, MCA[x]_AHCLKR or MCA[x]_AHCLKX high or low 10 ns
3 tc(ACLKRX) Cycle time, MCA[x]_ACLKR or MCA[x]_AHCLKX 20 ns
4 tw(ACLKRX) Pulse duration, MCA[x]_ACLKR or MCA[x]_AHCLKX high or low 10 ns
5 tsu(AFSRX-ACLKRX) Setup time, MCA[x]_AFSR or MCA[x]_AFSX input valid before MCA[x]_ACLKR or MCA[x]_ACLKX ACLKR or ACLKX int 11.5 ns
ACLKR or ACLKX ext in 4
ACLKR or ACLKX ext out 4
6 th(ACLKRX-AFSRX) Hold time, MCA[x]_AFSR or MCA[x]_AFSX input valid after MCA[x]_ACLKR or MCA[x]_ACLKX ACLKR or ACLKX int -1 ns
ACLKR or ACLKX ext in 0.5
ACLKR or ACLKX ext out 0.5
7 tsu(AXR-ACLKRX) Setup time, MCA[x]_AXR input valid before MCA[x]_ACLKR or MCA[x]_ACLKX ACLKR or ACLKX int 11.5 ns
ACLKR or ACLKX ext in 4
ACLKR or ACLKX ext out 4
8 th(ACLKRX-AXR) Hold time, MCA[x]_AXR input valid after MCA[x]_ACLKR or MCA[x]_ACLKX ACLKR or ACLKX int -1 ns
ACLKR or ACLKX ext in 0.5
ACLKR or ACLKX ext out 0.5
(1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1
ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0
ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1
ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1
ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0
ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1
AM3894 AM3892 td_mcasp_it_sprs614.gif
A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in).
B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in).
Figure 9-74 McASP Input Timing

Table 9-80 Switching Characteristics Over Recommended Operating Conditions for McASP(1)

(see Figure 9-75)
NO. PARAMETER MIN MAX UNIT
9 tc(AHCLKRX) Cycle time, MCA[x]_AHCLKR/X 20(2) ns
10 tw(AHCLKRX) Pulse duration, MCA[x]_AHCLKR/X high or low 0.5P - 2.5(3) ns
11 tc(ACLKRX) Cycle time, MCA[x]_ACLKR or ACLKX 20 ns
12 tw(ACLKRX) Pulse duration, MCA[x]_ACLKR or ACLKX high or low 0.5P - 2.5(3) ns
13 td(ACLKRX-AFSRX) Delay time, MCA[x]_ACLKR or ACLKX transmit edge to MCA[x]_AFSR/X output valid ACLKR or ACLKX int 0 6 ns
ACLKR or ACLKX ext in 2 13.5
Delay time, MCA[x]_ACLKR or ACLKX transmit edge to MCA[x]_AFSR/X output valid with Pad Loopback ACLKR or ACLKX ext out 2 13.5
14 td(ACLKX-AXR) Delay time, MCA[x]_ACLKX transmit edge to MCA[x]_AXR output valid ACLKX int -1 5 ns
ACLKX ext in 2 13.5
Delay time, MCA[x]_ACLKX transmit edge to MCA[x]_AXR output valid with Pad Loopback ACLKX ext out 2 13.5
15 tdis(ACLKX-AXR) Disable time, MCA[x]_ACLKX transmit edge to MCA[x]_AXR output high impedance ACLKX int -1 5 ns
ACLKX ext in 2 13.5
Disable time, MCA[x]_ACLKX transmit edge to MCA[x]_AXR output high impedance with Pad Loopback ACLKX ext out 2 13.5
(1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1
ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0
ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1
ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1
ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0
ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1
(2) 50 MHz
(3) P = AHCLKR or AHCLKX period.
AM3894 AM3892 td_mcasp_ot_sprs614.gif
A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in).
B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in).
Figure 9-75 McASP Output Timing

9.13 Multichannel Buffered Serial Port (McBSP)

The McBSP provides these functions:

  • Full-duplex communication
  • Double-buffered data registers, which allow a continuous data stream
  • Independent framing and clocking for receive and transmit
  • Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially connected analog-to-digital (AD) and digital-to-analog (DA) devices
  • Supports TDM, I2S, and similar formats
  • External shift clock or an internal, programmable frequency shift clock for data transfer
  • 5KB Tx and Rx buffer
  • Supports three interrupt and two DMA requests.

The McBSP module may support two types of data transfer at the system level:

  • The full-cycle mode, for which one clock period is used to transfer the data, generated on one edge and captured on the same edge (one clock period later).
  • The half-cycle mode, for which one half clock period is used to transfer the data, generated on one edge and captured on the opposite edge (one half clock period later). Note that a new data is generated only every clock period, which secures the required hold time. The interface clock (CLKX or CLKR) activation edge (data or frame sync capture and generation) has to be configured accordingly with the external peripheral (activation edge capability) and the type of data transfer required at the system level.

For more detailed information on the McBSP peripheral, see the McBSP chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

The following sections describe the timing characteristics for applications in normal mode (that is, the McBSP connected to one peripheral) and TDM applications in multipoint mode.

9.13.1 McBSP Peripheral Registers

This McBSP peripheral registers are described in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7). Each register is documented as an offset from a base address for the peripheral. The base addresses for all of the peripherals are shown in Table 3-19, L3 Memory Map.

9.13.2 McBSP Electrical Data and Timing

Table 9-81 Timing Requirements for McBSP - Master Mode(1)

(see Figure 9-76)
NO. MIN MAX UNIT
6 tsu(DRV-CLKAE) Setup time, MCB_DR valid before MCB_CLK active edge(2) 3.5 ns
7 th(CLKAE-DRV) Hold time, MCB_DR valid after MCB_CLK active edge(2) 0.1 ns
(1) The timings apply to all configurations regardless of MCB_CLK polarity and which clock edges are used to drive output data and capture input data.
(2) MCB_CLK corresponds to either MCB_CLKX or MCB_CLKR.

Table 9-82 Switching Characteristics Over Recommended Operating Conditions for McBSP - Master Mode(1)

(see Figure 9-76)
NO. PARAMETER MIN MAX UNIT
1 tc(CLK) Cycle time, output MCB_CLK period(2) 20.83 ns
2 tw(CLKL) Pulse duration, output MCB_CLK low(2) 0.5*P - 1(3) ns
3 tw(CLKH) Pulse duration, output MCB_CLK high(2) 0.5*P - 1(3) ns
4 td(CLKAE-FSV) Delay time, output MCB_CLK active edge to output MCB_FS valid(2)(4) 0.7 9.4 ns
5 td(CLKXAE-DXV) Delay time, output MCB_CLKX active edge to output MCB_DX valid 0.7 9.4 ns
(1) The timings apply to all configurations regardless of MCB_CLK polarity and which clock edges are used to drive output data and capture input data.
(2) MCB_CLK corresponds to either MCB_CLKX or MCB_CLKR.
(3) P = MCB_CLKX or MCB_CLKR output CLK period, in ns; use whichever value is greater. This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKX or CLKR) in the reasonable range of 40-60 duty cycle.
(4) MCB_FS corresponds to either MCB_FSX or MCB_FSR.
AM3894 AM3892 td_mcbsp_mstr_sprs614.gif
A. The timings apply to all configurations regardless of MCB_CLK polarity and which clock edges are used to drive output data and capture input data.
B. MCBSP_CLK corresponds to either MCBSP_CLKX or MCBSP_CLKR; MCBSP_FS corresponds to either MCBSP_FSX or MCBSP_FSR.
McBSP in 6-pin mode: DX and DR as data pins; CLKX, CLKR, FSX and FSR as control pins.
McBSP in 4-pin mode: DX and DR as data pins; CLKX and FSX pins as control pins. The CLKX and FSX pins are internally looped back via software configuration, respectively to the CLKR and FSR internal signals for data receive.
C. The polarity of McBSP frame synchronization is software configurable.
D. The active clock edge selection of MCBSP_CLK (rising or falling) on which MCBSP_DX data is latched and MCBSP_DR data is sampled is software configurable.
E. Timing diagrams are for data delay set to 1.
F. For further details about the registers used to configure McBSP, see the McBSP chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).
Figure 9-76 McBSP Master Mode Timing

Table 9-83 Timing Requirements for McBSP - Slave Mode(1)

(see Figure 9-77)
NO. MIN MAX UNIT
1 tc(CLK) Cycle time, MCB_CLK period(2) 20.83 ns
2 tw(CLKL) Pulse duration, MCB_CLK low(2) 0.5*P - 1(3) ns
3 tw(CLKH) Pulse duration, MCB_CLK high(2) 0.5*P - 1(3) ns
4 tsu(FSV-CLKAE) Setup time, MCB_FS valid before MCB_CLK active edge(2)(4) 3.8 ns
5 th(CLKAE-FSV) Hold time, MCB_FS valid after MCB_CLK active edge(2)(4) 0 ns
7 tsu(DRV-CLKAE) Setup time, MCB_DR valid before MCB_CLK active edge(2) 3.8 ns
8 th(CLKAE-DRV) Hold time, MCB_DR valid after MCB_CLK active edge(2) 0 ns
(1) The timings apply to all configurations regardless of MCB_CLK polarity and which clock edges are used to drive output data and capture input data.
(2) MCB_CLK corresponds to either MCB_CLKX or MCB_CLKR.
(3) P = MCB_CLKX or MCB_CLKR output CLK period, in ns; use whichever value is greater. This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKX or CLKR) in the reasonable range of 40-60 duty cycle.
(4) MCB_FS corresponds to either MCB_FSX or MCB_FSR.

Table 9-84 Switching Characteristics Over Recommended Operating Conditions for McBSP - Slave Mode(1)

(see Figure 9-77)
NO. PARAMETER MIN MAX UNIT
6 td(CLKXAE-DXV) Delay time, input MCB_CLKx active edge to output MCB_DX valid 0.5 12.5 ns
(1) The timings apply to all configurations regardless of MCB_CLK polarity and which clock edges are used to drive output data and capture input data.
AM3894 AM3892 td_mcbsp_slv_sprs614.gif
A. The timings apply to all configurations regardless of MCB_CLK polarity and which clock edges are used to drive output data and capture input data.
B. MCBSP_CLK corresponds to either MCBSP_CLKX or MCBSP_CLKR; MCBSP_FS corresponds to either MCBSP_FSX or MCBSP_FSR.
McBSP in 6-pin mode: DX and DR as data pins; CLKX, CLKR, FSX and FSR as control pins.
McBSP in 4-pin mode: DX and DR as data pins; CLKX and FSX pins as control pins. The CLKX and FSX pins are internally looped back via software configuration, respectively to the CLKR and FSR internal signals for data receive.
C. The polarity of McBSP frame synchronization is software configurable.
D. The active clock edge selection of MCBSP_CLK (rising or falling) on which MCBSP_DX data is latched and MCBSP_DR data is sampled is software configurable.
E. Timing diagrams are for data delay set to 1.
F. For further details about the registers used to configure McBSP, see the McBSP chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).
Figure 9-77 McBSP Slave Mode Timing

9.14 Peripheral Component Interconnect Express (PCIe)

The device supports connections to PCIe-compliant devices via the integrated PCIe master or slave bus interface. The PCIe module is comprised of a dual-mode PCIe core and a SerDes PHY. The device implements a single two-lane PCIe 2.0 (5.0 GT/s) endpoint or root complex port.

The device PCIe supports the following features:

  • Supports Gen1 and Gen2 in x1 or x2 mode
  • One port with up to 2 x 5 GT/s lanes
  • Single virtual channel (VC), single traffic class (TC)
  • Single function in end-point mode
  • Automatic width and speed negotiation and lane reversal
  • Max payload: 128 byte outbound, 256 byte inbound
  • Automatic credit management
  • ECRC generation and checking
  • Configurable BAR filtering
  • Supports PCIe messages
  • Legacy interrupt reception (RC) and generation (EP)
  • MSI generation and reception
  • PCI device power management, except D3 cold with vaux
  • Active state power management state L0 and L1.

For more detailed information on the PCIe port peripheral module, see the PCIe chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

The PCIe peripheral on the device conforms to the PCI Express Base 2.0 Specification.

9.14.1 PCIe Design and Layout Specifications

NOTE

For more information on PCB layout, see the DM816xx Easy CYG Package PCB Escape Routing application report (literature number SPRABK6).

9.14.1.1 Clock Source

A standard 100-MHz PCIe differential clock source must be used for PCIe operation (for details, see Section 8.3.2).

9.14.1.2 PCIe Connections and Interface Compliance

The PCIe interface on the device is compliant with the PCI Express Base 2.0 Specification. Refer to the PCIe specifications for all connections that are described in it. For coupling capacitor selection, see Section 9.14.1.2.1.

The use of PCIe-compatible bridges and switches is allowed for interfacing with more than one other processor or PCIe device.

9.14.1.2.1 Coupling Capacitors

AC coupling capacitors are required on the transmit data pair. Table 9-85 shows the requirements for these capacitors.

Table 9-85 AC Coupling Capacitors Requirements

PARAMETER MIN TYP MAX UNIT
PCIe AC coupling capacitor value 75 200 nF
PCIe AC coupling capacitor package size(1) 0402 0603 EIA(2)
(1) The physical size of the capacitor should be as small as practical. Use the same size on both lines in each pair, placed side by side.
(2) EIA LxW units; for example, a 0402 is a 40x20 mil (thousandths of an inch) surface-mount capacitor.

9.14.1.2.2 Polarity Inversion

The PCIe specification requires polarity inversion support. This means, for layout purposes, polarity is unimportant since each signal can change its polarity on-die inside the chip. This means polarity within a lane is unimportant for layout.

9.14.1.2.3 Lane Reversal

The device supports lane reversal. Since there are two lanes, this means the lanes can be switched in layout for better PCB routing.

9.14.1.3 Non-Standard PCIe Connections

The following sections contain suggestions for any PCIe connection that is not described in the official PCIe specification, such as an on-board device-to-device connection, or device-to-other PCIe-compliant processor connection.

9.14.1.3.1 PCB Stackup Specifications

Table 9-86 shows the stackup and feature sizes required for these types of PCIe connections.

Table 9-86 PCIe PCB Stackup Specifications

PARAMETER MIN TYP MAX UNIT
PCB Routing and Plane Layers 4 6 - Layers
Signal Routing Layers 2 3 - Layers
Number of ground plane cuts allowed within PCIe routing region - - 0 Cuts
Number of layers between PCIe routing area and reference plane(1) - - 0 Layers
PCB Routing clearance - 4 - Mils
PCB Trace width(2) - 4 - Mils
PCB BGA escape via pad size - 20 - Mils
PCB BGA escape via hole size - 10 Mils
Processor BGA pad size(3)(4) 0.3 mm
(1) A reference plane may be a ground plane or the power plane referencing the PCIe signals.
(2) In breakout area.
(3) Non-solder mask defined pad.
(4) Per IPC-7351A BGA pad size guideline.

9.14.1.3.2 Routing Specifications

The PCIe data signal traces must be routed to achieve 100 Ω (±20%) differential impedance and 60 Ω (±15%) single-ended impedance. The single-ended impedance is required because differential signals are extremely difficult to closely couple on PCBs and, therefore, single-ended impedance becomes important. These requirements are the same as those recommended in the PCIe Motherboard Checklist 1.0 document, available from PCI-SIG.

These impedances are impacted by trace width, trace spacing, distance between signals and referencing planes, and dielectric material. Verify with a PCB design tool that the trace geometry for both data signal pairs result in as close to 100 Ω differential impedance and 60 Ω single-ended impedance as possible. For best accuracy, work with your PCB fabricator to ensure this impedance is met.

In general, closely coupled differential signal traces are not an advantage on PCBs. When differential signals are closely coupled, tight spacing and width control is necessary. Very small width and spacing variations affect impedance dramatically, so tight impedance control can be more problematic to maintain in production.

Loosely coupled PCB differential signals make impedance control much easier. Wider traces and spacing make obstacle avoidance easier, and trace width variations do not affect impedance as much; therefore, it is easier to maintain an accurate impedance over the length of the signal. The wider traces also show reduced skin effect and, therefore, often result in better signal integrity.

Table 9-87 shows the routing specifications for the PCIe data signals.

Table 9-87 PCIe Routing Specifications

PARAMETER MIN TYP MAX UNIT
PCIe signal trace length 10(1) Inches
Differential pair trace matching 10(2) Mils
Number of stubs allowed on PCIe traces(3) 0 Stubs
TX or RX pair differential impedance 80 100 120 Ω
TX or RX single-ended impedance 51 60 69 Ω
Pad size of vias on PCIe trace 25(4) Mils
Hole size of vias on PCIe trace 14 Mils
Number of vias on each PCIe trace 3 Vias(5)
PCIe differential pair to any other trace spacing 2*DS(6)
(1) Beyond this, signal integrity may suffer.
(2) For example, RXP0 within 10 Mils of RXN0.
(3) In-line pads may be used for probing.
(4) 35-Mil antipad max recommended.
(5) Vias must be used in pairs with their distance minimized.
(6) DS = differential spacing of the PCIe traces.

9.14.2 PCIe Peripheral Register Descriptions

Table 9-88 PCIe Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x5100 0000 PID Peripheral Version and ID
0x5100 0004 CMD_STATUS Command Status
0x5100 0008 CFG_SETUP Config Transaction Setup
0x5100 000C IOBASE IO TLP Base
0x5100 0010 TLPCFG TLP Attribute Configuration
0x5100 0014 RSTCMD Reset Command and Status
0x5100 0020 PMCMD Power Management Command
0x5100 0024 PMCFG Power Management Configuration
0x5100 0028 ACT_STATUS Activity Status
0x5100 0030 OB_SIZE Outbound Size
0x5100 0034 DIAG_CTRL Diagnostic Control
0x5100 0038 ENDIAN Endian Mode
0x5100 003C PRIORITY CBA Transaction Priority
0x5100 0050 IRQ_EOI End of Interrupt
0x5100 0054 MSI_IRQ MSI Interrupt IRQ
0x5100 0064 EP_IRQ_SET Endpoint Interrupt Request Set
0x5100 0068 EP_IRQ_CLR Endpoint Interrupt Request Clear
0x5100 006C EP_IRQ_STATUS Endpoint Interrupt Status
0x5100 0070 GPRO General Purpose 0
0x5100 0074 GPR1 General Purpose 1
0x5100 0078 GPR2 General Purpose 2
0x5100 007C GPR3 General Purpose 3
0x5100 0100 MSI0_IRQ_STATUS_RAW MSI 0 Interrupt Raw Status
0x5100 0104 MSI0_IRQ_STATUS MSI 0 Interrupt Enabled Status
0x5100 0108 MSI0_IRQ_ENABLE_SET MSI 0 Interrupt Enable Set
0x5100 010C MSI0_IRQ_ENABLE_CLR MSI 0 Interrupt Enable Clear
0x5100 0180 IRQ_STATUS_RAW Raw Interrupt Status
0x5100 0184 IRQ_STATUS Interrupt Enabled Status
0x5100 0188 IRQ_ENABLE_SET Interrupt Enable Set
0x5100 018C IRQ_ENABLE_CLR Interrupt Enable Clear
0x5100 01C0 ERR_IRQ_STATUS_RAW Raw ERR Interrupt Status
0x5100 01C4 ERR_IRQ_STATUS ERR Interrupt Enabled Status
0x5100 01C8 ERR_IRQ_ENABLE_SET ERR Interrupt Enable Set
0x5100 01CC ERR_IRQ_ENABLE_CLR ERR Interrupt Enable Clear
0x5100 01D0 PMRST_IRQ_STATUS_RAW Power Management and Reset Interrupt Status
0x5100 01D4 PMRST_IRQ_STATUS Power Management and Reset Interrupt Enabled Status
0x5100 01D8 PMRST_ENABLE_SET Power Management and Reset Interrupt Enable Set
0x5100 01DC PMRST_ENABLE_CLR Power Management and Reset Interrupt Enable Clear
0x5100 0200 OB_OFFSET_INDEXn Outbound Translation Region N Offset Low and Index
0x5100 0204 OB_OFFSETn_HI Outbound Translation Region N Offset High
0x5100 0300 IB_BAR0 Inbound Translation Bar Match 0
0x5100 0304 IB_START0_LO Inbound Translation 0 Start Address Low
0x5100 0308 IB_START0_HI Inbound Translation 0 Start Address High
0x5100 030C IB_OFFSET0 Inbound Translation 0 Address Offset
0x5100 0310 IB_BAR1 Inbound Translation Bar Match 1
0x5100 0314 IB_START1_LO Inbound Translation 1 Start Address Low
0x5100 0318 IB_START1_HI Inbound Translation 1 Start Address High
0x5100 031C IB_OFFSET1 Inbound Translation 1 Address Offset
0x5100 0320 IB_BAR2 Inbound Translation Bar Match 2
0x5100 0324 IB_START2_LO Inbound Translation 2 Start Address Low
0x5100 0328 IB_START2_HI Inbound Translation 2 Start Address High
0x5100 032C IB_OFFSET2 Inbound Translation 2 Address Offset
0x5100 0330 IB_BAR3 Inbound Translation Bar Match 3
0x5100 0334 IB_START3_LO Inbound Translation 3 Start Address Low
0x5100 0338 IB_START3_HI Inbound Translation 3 Start Address High
0x5100 033C IB_OFFSET3 Inbound Translation 3 Address Offset
0x5100 0380 PCS_CFG0 PCS Configuration 0
0x5100 0384 PCS_CFG1 PCS Configuration 1
0x5100 0388 PCS_STATUS PCS Status
0x5100 0390 SERDES_CFG0 SerDes Configuration for Lane 0
0x5100 0394 SERDES_CFG1 SerDes Configuration for Lane 1

9.14.3 PCIe Electrical Data and Timing

Texas Instruments (TI) has performed the simulation and system characterization to ensure that the PCIe peripheral meets all AC timing specifications as required by the PCI Express Base 2.0 Specification. Therefore, the AC timing specifications are not reproduced here. For more information on the AC timing specifications, see Sections 4.3.3.5 and 4.3.4.4 of the PCI Express Base 2.0 Specification.

9.15 Real-Time Clock (RTC)

The real-time clock is a precise timer that can generate interrupts on intervals specified by the user. Interrupts can occur every second, minute, hour, or day. The clock, itself, can track the passage of real time for durations of several years, provided it has a sufficient power source the whole time.

The basic purpose for the RTC is to keep time of day. The other equally important purpose of the RTC is for Digital Rights management. Some degree of tamper-proofing is needed to ensure that simply stopping, resetting, or corrupting the RTC does not go unnoticed; so, if this occurs, the application can re-acquire the time of day from a trusted source. The final purpose of RTC is to wake up the rest of the device from a power-down state. The RTC features include:

  • Time information (hours, minutes, seconds) directly in binary coded decimal (BCD), for easy decoding.
  • Calendar information (day, month, year, day of week) directly in BCD code up to year 2099.
  • Shadow time and calendar access; ease of reading time.
  • Interrupt generation, periodically (1d, 1h, 1m, 1s) or at a precise time of day or date.
  • 30-second time correction (crystal frequency compensation).
  • OCP slave port for register access.
  • Supports power idle protocol with SWakeUp capable on alarm or timer events.

The RTC is driven by SYSCLK18 (32.768 kHz) or an optional 32.768-kHz clock can be input on the CLKIN32 clock input pin for RTC reference. If the CLKIN32 pin is not connected to a 32.768-kHz clock input, this pin should be pulled low.

Figure 9-78 shows the major components of the RTC.

AM3894 AM3892 bd_rtc_sprs614.gifFigure 9-78 Real-Time Clock Block Diagram

9.15.1 RTC Register Descriptions

Table 9-89 RTC Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x480C 0000 SECONDS_REG Seconds
0x480C 0004 MINUTES_REG Minutes
0x480C 0008 HOURS_REG Hours
0x480C 000C DAYS_REG Day of the Month
0x480C 0010 MONTHS_REG Month
0x480C 0014 YEARS_REG Year
0x480C 0018 WEEK_REG Day of the Week
0x480C 0020 ALARM_SECONDS_REG Alarm Seconds
0x480C 0024 ALARM_MINUTES_REG Alarm Minutes
0x480C 0028 ALARM_HOURS_REG Alarm Hours
0x480C 002C ALARM_DAYS_REG Alarm Days
0x480C 0030 ALARM_MONTHS_REG Alarm Months
0x480C 0034 ALARM_YEARS_REG Alarm Years
0x480C 0040 RTC_CTRL_REG Control
0x480C 0044 RTC_STATUS_REG Status
0x480C 0048 RTC_INTERRUPTS_REG Interrupt Enable
0x480C 004C RTC_COMP_LSB_REG Compensation (LSB)
0x480C 0050 RTC_COMP_MSB_REG Compensation (MSB)
0x480C 0054 RTC_OSC_REG Oscillator
0x480C 0060 RTC_SCRATCH0_REG Scratch 0 (general-purpose)
0x480C 0064 RTC_SCRATCH1_REG Scratch 1 (general-purpose)
0x480C 0068 RTC_SCRATCH2_REG Scratch 2 (general-purpose)
0x480C 006C KICK0 Kick 0 (write protect)
0x480C 0070 KICK1 Kick 1 (write protect)
0x480C 0074 RTC_REVISION Revision
0x480C 0078 RTC_SYSCONFIG Clock Management Configuration
0x480C 007A RTC_IRQWAKEEN_0 Wakeup Generation

9.16 Secure Digital and Secure Digital Input Output (SD and SDIO)

The device SD and SDIO Controller has following features:

  • Secure Digital (SD) memory card with Secure Data IO (SDIO)
  • Supports SDHC (SD high capacity)
  • SD and SDIO protocol support
  • Programmable clock frequency
  • 1024 byte read or write FIFO to lower system overhead
  • Slave DMA transfer capability
  • Full compliance with SD command and response sets, as defined in the SD physical layer specification v2.00
  • Full compliance with SDIO command and response sets and interrupt and read-wait suspend-resume operations, as defined in the SD part E1 specification v 2.00
  • Full compliance with SD host controller standard specification sets as defined in the SD card specification part A2 v2.00.

For more detailed information on SD and SDIO, see the SD and SDIO chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.16.1 SD and SDIO Peripheral Register Descriptions

Table 9-90 SD and SDIO Registers(1)

HEX ADDRESS ACRONYM REGISTER NAME
0x4806 0000 SD_HL_REV IP Revision Identifier
0x4806 0004 SD_HL_HWINFO Hardware Configuration
0x4806 0010 SD_HL_SYSCONFIG Clock Management Configuration
0x4806 0110 SD_SYSCONFIG System Configuration
0x4806 0114 SD_SYSSTATUS System Status
0x4806 0124 SD_CSRE Card status response error
0x4806 0128 SD_SYSTEST System Test
0x4806 012C SD_CON Configuration
0x4806 0130 SD_PWCNT Power counter
0x4806 0200 SD_SDMASA SDMA System address:
0x4806 0204 SD_BLK Transfer Length Configuration
0x4806 0208 SD_ARG Command argument
0x4806 020C SD_CMD Command and transfer mode
0x4806 0210 SD_RSP10 Command Response 0 and 1
0x4806 0214 SD_RSP32 Command Response 2 and 3
0x4806 0218 SD_RSP54 Command Response 4 and 5
0x4806 021C SD_RSP76 Command Response 6 and 7
0x4806 0220 SD_DATA Data
0x4806 0224 SD_PSTATE Present state
0x4806 0228 SD_HCTL Host Control
0x4806 022C SD_SYSCTL SD system control
0x4806 0230 SD_STAT Interrupt status
0x4806 0234 SD_IE Interrupt SD enable
0x4806 0238 SD_ISE
0x4806 023C SD_AC12 Auto CMD12 Error Status
0x4806 0240 SD_CAPA Capabilities
0x4806 0248 SD_CUR_CAPA Maximum current capabilities
0x4806 0250 SD_FE Force Event
0x4806 0254 SD_ADMAES ADMA Error Status
0x4806 0258 SD_ADMASAL ADMA System address Low bits
0x4806 025C SD_ADMASAH ADMA System address High bits
0x4806 02FC SD_REV Versions
(1) SD and SDIO registers are limited to 32-bit data accesses; 16-bit and 8-bit accesses are not allowed and can corrupt register content.

9.16.2 SD and SDIO Electrical Data and Timing

9.16.2.1 SD Identification and Standard SD Mode

Table 9-91 Timing Requirements for SD and SDIO—SD Identification and Standard SD Mode

(see Figure 9-80, Figure 9-82)
NO. MIN MAX UNIT
SD Identification Mode
1 tsu(CMDV-CLKH) Setup time, SD_CMD valid before SD_CLK rising clock edge 1198.2 ns
2 th(CLKH-CMDIV) Hold time, SD_CMD valid after SD_CLK rising clock edge 1249.0 ns
Standard SD Mode
1 tsu(CMDV-CLKH) Setup time, SD_CMD valid before SD_CLK rising clock edge 4.1 ns
2 th(CLKH-CMDIV) Hold time, SD_CMD valid after SD_CLK rising clock edge 1.9 ns
3 tsu(DATV-CLKH) Setup time, SD_DATx valid before SD_CLK rising clock edge 4.1 ns
4 th(CLKH-DATV) Hold time, SD_DATx valid after SD_CLK rising clock edge 1.9 ns

Table 9-92 Switching Characteristics Over Recommended Operating Conditions for SD and SDIO—SD Identification and Standard SD Mode

(see Figure 9-79, Figure 9-80, Figure 9-81, Figure 9-82)
NO. PARAMETER MIN MAX UNIT
SD Identification Mode
8 fop(CLKID) Identification mode frequency, SD_CLK 400 kHz
tc(CLKID) Identification mode period, SD_CLK 2500.0 ns
13 td(CLKH-CMD) Delay time, SD_CLK rising clock edge to SD_CMD transition 6.5 2492.5 ns
Standard SD Mode
7 fop(CLK) Operating frequency, SD_CLK 24 MHz
tc(CLK) Operating period, SD_CLK 41.7 ns
9 tw(CLKL) Pulse duration, SD_CLK low 0.45*P(1) 0.55*P(1) ns
10 tw(CLKH) Pulse duration, SD_CLK high 0.45*P(1) 0.55*P(1) ns
13 td(CLKH-CMD) Delay time, SD_CLK rising clock edge to SD_CMD transition 6.3 35.3 ns
14 td(CLKH-DAT) Delay time, SD_CLK rising clock edge to SD_DATx transition 6.3 35.3 ns
(1) P = SD_CLK period.

9.16.2.2 High-Speed SD Mode

Table 9-93 Timing Requirements for SD and SDIO—High-Speed SD Mode

(see Figure 9-80, Figure 9-82)
NO. MIN MAX UNIT
1 tsu(CMDV-CLKH) Setup time, SD_CMD valid before SD_CLK rising clock edge 4.1 ns
2 th(CLKH-CMDV) Hold time, SD_CMD valid after SD_CLK rising clock edge 1.9 ns
3 tsu(DATV-CLKH) Setup time, SD_DATx valid before SD_CLK rising clock edge 4.1 ns
4 th(CLKH-DATV) Hold time, SD_DATx valid after SD_CLK rising clock edge 1.9 ns

Table 9-94 Switching Characteristics Over Recommended Operating Conditions for SD and SDIO—High-Speed SD Mode

(see Figure 9-79, Figure 9-80, Figure 9-81, Figure 9-82)
NO. PARAMETER MIN MAX UNIT
7 fop(CLK) Operating frequency, SD_CLK 48 MHz
tc(CLK) Operating period: SD_CLK 20.8 ns
8 fop(CLKID) Identification mode frequency, SD_CLK 400 kHz
tc(CLKID) Identification mode period: SD_CLK 2500.0 ns
9 tw(CLKL) Pulse duration, SD_CLK low 0.5*P(1) ns
10 tw(CLKH) Pulse duration, SD_CLK high 0.5*P(1) ns
11 tr(CLK) Rise time, All Signals (10% to 90%) 2.2 ns
12 tf(CLK) Fall time, All Signals (10% to 90%) 2.2 ns
13 td(CLKL-CMD) Delay time, SD_CLK rising clock edge to SD_CMD transition 2.5(2) 13.9 ns
14 td(CLKL-DAT) Delay time, SD_CLK rising clock edge to SD_DATx transition 2.5(2) 13.9 ns
(1) P = SD_CLK period.
(2) Longer DATA and CMD PCB track routing than clock trace routing may be needed to meet SD device input hold time.
AM3894 AM3892 td_sd_cmd_sprs614.gifFigure 9-79 SD Host Command Timing
AM3894 AM3892 td_sd_rspn_sprs614.gifFigure 9-80 SD Card Response Timing
AM3894 AM3892 td_sd_wrt_sprs614.gifFigure 9-81 SD Host Write Timing
AM3894 AM3892 td_sd_rdst_sprs614.gifFigure 9-82 SD Host Read and Card CRC Status Timing

9.17 Serial ATA Controller (SATA)

The Serial ATA (SATA) peripheral provides a direct interface for up to two hard disk drives (SATA) and supports the following features:

  • Serial ATA 1.5 Gbps and 3 Gbps speeds
  • Integrated PHY
  • Integrated Rx and Tx data buffers
  • Supports all SATA power management features
  • Hardware-assisted native command queuing (NCQ) for up to 32 entries
  • Supports port multiplier with command-based switching for connection to multiple hard disk drives
  • Activity LED support.

For more detailed information on the SATA, see the SATA chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.17.1 SATA Interface Design Specifications

NOTE

For more information on PCB layout, see the DM816xx Easy CYG Package PCB Escape Routing application report (literature number SPRABK6).

This section provides PCB design and layout specifications for the SATA interface. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. Simulation and system design work has been done to ensure the SATA interface requirements are met.

A standard 100-MHz differential clock source must be used for SATA operation (for details, see Section 8.3.2).

9.17.1.1 SATA Interface Schematic

Figure 9-83 shows the data portion of the SATA interface schematic. The specific pin numbers can be obtained from Table 4-17, Serial ATA Terminal Functions.

AM3894 AM3892 sata_if_hi_lvl_sprs614.gifFigure 9-83 SATA Interface High-Level Schematic

9.17.1.2 Compatible SATA Components and Modes

Table 9-95 shows the compatible SATA components and supported modes. Note that the only supported configuration is an internal cable from the processor host to the SATA device.

Table 9-95 SATA Supported Modes

PARAMETER MIN MAX UNIT SUPPORTED
Transfer Rates 1.5 3.0 Gbps
eSATA - - - No
xSATA - - - No
Backplane - - - No
Internal Cable - - - Yes

9.17.1.3 PCB Stackup Specifications

Table 9-96 shows the PCB stackup and feature sizes required for SATA.

Table 9-96 SATA PCB Stackup Specifications

PARAMETER MIN TYP MAX UNIT
PCB routing and plane layers 4 6 - Layers
Signal routing layers 2 3 - Layers
Number of ground plane cuts allowed within SATA routing region - - 0 Cuts
Number of layers between SATA routing region and reference ground plane - - 0 Layers
PCB trace width, w - 4 - Mils
PCB BGA escape via pad size - 20 - Mils
PCB BGA escape via hole size - 10 Mils
Processor BGA pad size(1) 0.3 mm
(1) NSMD pad, per IPC-7351A BGA pad size guideline.

9.17.1.4 Routing Specifications

The SATA data signal traces must be routed to achieve 100 Ω (±20%) differential impedance and 60 Ω (±15%) single-ended impedance. The single-ended impedance is required because differential signals are extremely difficult to closely couple on PCBs and, therefore, single-ended impedance becomes important. 60 Ω is chosen for the single-ended impedance to minimize problems caused by too low an impedance.

These impedances are impacted by trace width, trace spacing, distance to reference planes, and dielectric material. Verify with a PCB design tool that the trace geometry for both data signal pairs results in as close to 100 Ω differential impedance and 60 Ω single-ended impedance traces as possible. For best accuracy, work with your PCB fabricator to ensure this impedance is met.

Table 9-97 shows the routing specifications for the SATA data signals.

Table 9-97 SATA Routing Specifications

PARAMETER MIN TYP MAX UNIT
Processor-to-SATA header trace length 10(1) Inches
Number of stubs allowed on SATA traces(2) 0 Stubs
TX and RX pair differential impedance 80 100 120 Ω
TX and RX single-ended impedance 51 60 69 Ω
Number of vias on each SATA trace 3 Vias(3)
SATA differential pair to any other trace spacing 2*DS(4)
(1) Beyond this, signal integrity may suffer.
(2) In-line pads may be used for probing.
(3) Vias must be used in pairs with their distance minimized.
(4) DS = differential spacing of the SATA traces.

9.17.1.5 Coupling Capacitors

AC coupling capacitors are required on the receive data pair. Table 9-98 shows the requirements for these capacitors.

Table 9-98 SATA AC Coupling Capacitors Requirements

PARAMETER MIN TYP MAX UNIT
SATA AC coupling capacitor value 1 10 12 nF
SATA AC coupling capacitor package size(1) 0402 0603 EIA(2)
(1) The physical size of the capacitor should be as small as practical. Use the same size on both lines in each pair, placed side by side.
(2) EIA LxW units; for example, a 0402 is a 40x20 mil surface-mount capacitor.

9.17.2 SATA Peripheral Register Descriptions

Table 9-99 SATA Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x4A14 0000 CAP HBA Capabilities
0x4A14 0004 GHC Global HBA Control
0x4A14 0008 IS Interrupt Status
0x4A14 000C PI Ports Implemented
0x4A14 0010 VS AHCI Version
0x4A14 0014 CCC_CTL Command Completion Coalescing Control
0x4A14 0018 CCC_PORTS Command Completion Coalescing Ports
0x4A14 001C - 0x4A14 009C - Reserved
0x4A14 00A0 BISTAFR BIST Active FIS
0x4A14 00A4 BISTCR BIST Control
0x4A14 00A8 BISTFCTR BIST FIS Count
0x4A14 00AC BISTSR BIST Status
0x4A14 00B0 BISTDECR BIST DWORD Error Count
0x4A14 00B4 - 0x4A14 00DF - Reserved
0x4A14 00E0 TIMER1MS BIST DWORD Error Count
0x4A14 00E4 - Reserved
0x4A14 00E8 GPARAM1R Global Parameter 1
0x4A14 00EC GPARAM2R Global Parameter 2
0x4A14 00F0 PPARAMR Port Parameter
0x4A14 00F4 TESTR Test
0x4A14 00F8 VERSIONR Version
0x4A14 00FC IDR (PID) ID
0x4A14 0100 P0CLB Port 0 Command List Base Address
0x4A14 0104 - Reserved
0x4A14 0108 P0FB Port 0 FIS Base Address
0x4A14 010C - Reserved
0x4A14 0110 P0IS Port 0 Interrupt Status
0x4A14 0114 P0IE Port 0 Interrupt Enable
0x4A14 0118 P0CMD Port 0 Command
0x4A14 011C - Reserved
0x4A14 0120 P0TFD Port 0 Task File Data
0x4A14 0124 P0SIG Port 0 Signature
0x4A14 0128 P0SSTS Port 0 Serial ATA Status (SStatus)
0x4A14 012C P0SCTL Port 0 Serial ATA Control (SControl)
0x4A14 0130 P0SERR Port 0 Serial ATA Error (SError)
0x4A14 0134 P0SACT Port 0 Serial ATA Active (SActive)
0x4A14 0138 P0CI Port 0 Command Issue
0x4A14 013C P0SNTF Port 0 Serial ATA Notification
0x4A14 0140 - 0x4A14 016C - Reserved
0x4A14 0170 P0DMACR Port 0 DMA Control
0x4A14 0174 - Reserved
0x4A14 0178 P0PHYCR Port 0 PHY Control
0x4A14 017C P0PHYSR Port 0 PHY Status
0x4A14 0180 P1CLB Port 1 Command List Base Address
0x4A14 0184 - Reserved
0x4A14 0188 P1FB Port 1 FIS Base Address
0x4A14 018C - Reserved
0x4A14 0190 P1IS Port 1 Interrupt Status
0x4A14 0194 P1IE Port 1 Interrupt Enable
0x4A14 0198 P1CMD Port 1 Command
0x4A14 019C - Reserved
0x4A14 01A0 P1TFD Port 1 Task File Data
0x4A14 01A4 P1SIG Port 1 Signature
0x4A14 01A8 P1SSTS Port 1 Serial ATA Status (SStatus)
0x4A14 01AC P1SCTL Port 1 Serial ATA Control (SControl)
0x4A14 01B0 P1SERR Port 1 Serial ATA Error (SError)
0x4A14 01B4 P1SACT Port 1 Serial ATA Active (SActive)
0x4A14 01B8 P1CI Port 1 Command Issue
0x4A14 01BC P1SNTF Port 1 Serial ATA Notification
0x4A14 01C0 - 0x4A14 01EC - Reserved
0x4A14 01F0 P1DMACR Port 1 DMA Control
0x4A14 01F4 - Reserved
0x4A14 01F8 P1PHYCR Port 1 PHY Control
0x4A14 01FC P1PHYSR Port 1 PHY Status
0x4A14 1100 IDLE Idle and Standby Modes
0x4A14 1104 PHYCFGR2 PHY Configuration 2

9.18 Serial Peripheral Interface (SPI)

The SPI is a high-speed synchronous serial input and output port that allows a serial bit stream of programmed length (4 to 32 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI is normally used for communication between the device and external peripherals. Typical applications include an interface-to-external IO or peripheral expansion via devices such as shift registers, display drivers, SPI EEPROMs, and analog-to-digital converters (ADCs).

The SPI supports the following features:

  • Master and slave operation
  • Four chip selects for interfacing and control to up to four SPI slave devices and connection to a single external master
  • 32-bit shift register
  • Buffered receive and transmit data register per channel (1 word deep), FIFO size is 64 bytes
  • Programmable SPI configuration per channel (clock definition, enable polarity and word width)
  • Supports one interrupt request and two DMA requests per channel.

For more detailed information on the SPI, see the SPI chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.18.1 SPI Peripheral Register Descriptions

Table 9-100 SPI Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x4803 0000 - 0x4803 010C - RESERVED
0x4803 0110 MCSPI_SYSCONFIG SYSTEM CONFIGURATION
0x4803 0114 MCSPI_SYSSTATUS SYSTEM STATUS
0x4803 0118 MCSPI_IRQSTATUS INTERRUPT STATUS
0x4803 011C MCSPI_IRQENABLE INTERRUPT ENABLE
0x4803 0120 - RESERVED
0x4803 0124 MCSPI_SYST SYSTEM TEST
0x4803 0128 MCSPI_MODULCTRL MODULE CONTROL
0x4803 012C MCSPI_CH0CONF CHANNEL 0 CONFIGURATION
0x4803 0130 MCSPI_CH0STAT CHANNEL 0 STATUS
0x4803 0134 MCSPI_CH0CTRL CHANNEL 0 CONTROL
0x4803 0138 MCSPI_TX0 CHANNEL 0 TRANSMITTER
0x4803 013C MCSPI_RX0 CHANNEL 0 RECEIVER
0x4803 0140 MCSPI_CH1CONF CHANNEL 1 CONFIGURATION
0x4803 0144 MCSPI_CH1STAT CHANNEL 1 STATUS
0x4803 0148 MCSPI_CH1CTRL CHANNEL 1 CONTROL
0x4803 014C MCSPI_TX1 CHANNEL 1 TRANSMITTER
0x4803 0150 MCSPI_RX1 CHANNEL 1 RECEIVER
0x4803 0154 MCSPI_CH2CONF CHANNEL 2 CONFIGURATION
0x4803 0158 MCSPI_CH2STAT CHANNEL 2 STATUS
0x4803 015C MCSPI_CH2CTRL CHANNEL 2 CONTROL
0x4803 0160 MCSPI_TX2 CHANNEL 2 TRANSMITTER
0x4803 0164 MCSPI_RX2 CHANNEL 2 RECEIVER
0x4803 0168 MCSPI_CH3CONF CHANNEL 3 CONFIGURATION
0x4803 016C MCSPI_CH3STAT CHANNEL 3 STATUS
0x4803 0170 MCSPI_CH3CTRL CHANNEL 3 CONTROL
0x4803 0174 MCSPI_TX3 CHANNEL 3 TRANSMITTER
0x4803 0178 MCSPI_RX3 CHANNEL 3 RECEIVER
0x4803 017C MCSPI_XFERLEVEL TRANSFER LEVELS
0x4803 0180 - 0x4803 01FF - RESERVED

9.18.2 SPI Electrical Data and Timing

Table 9-101 Timing Requirements for SPI - Master Mode

(see Figure 9-84 and Figure 9-85)
NO. MIN MAX UNIT
MASTER: 1 LOAD AT A MAXIMUM OF 5 pF
1 tc(SPICLK) Cycle time, SPI_CLK(1)(2) 20.8(3) ns
2 tw(SPICLKL) Pulse duration, SPI_CLK low(1) 0.5*P - 1(4) ns
3 tw(SPICLKH) Pulse duration, SPI_CLK high(1) 0.5*P - 1(4) ns
4 tsu(MISO-SPICLK) Setup time, SPI_D[x] valid before SPI_CLK active edge(1) 2.29 ns
5 th(SPICLK-MISO) Hold time, SPI_D[x] valid after SPI_CLK active edge(1) 2.67 ns
6 td(SPICLK-MOSI) Delay time, SPI_CLK active edge to SPI_D[x] transition(1) -3.57 3.57 ns
7 td(SCS-MOSI) Delay time, SPI_SCS[x] active edge to SPI_D[x] transition 3.57 ns
8 td(SCS-SPICLK) Delay time, SPI_SCS[x] active to SPI_CLK first edge(1) MASTER_PHA0(5) B-4.2(6) ns
MASTER_PHA1(5) A-4.2(7) ns
9 td(SPICLK-SCS) Delay time, SPI_CLK last edge to SPI_SCS[x] inactive(1) MASTER_PHA0(5) A-4.2(7) ns
MASTER_PHA1(5) B-4.2(6) ns
MASTER: UP TO 4 LOADS AT A MAXIMUM TOTAL OF 25 pF
1 tc(SPICLK) Cycle time, SPI_CLK(1)(2) 41.7(8) ns
2 tw(SPICLKL) Pulse duration, SPI_CLK low(1) 0.5*P - 2(4) ns
3 tw(SPICLKH) Pulse duration, SPI_CLK high(1) 0.5*P - 2(4) ns
4 tsu(MISO-SPICLK) Setup time, SPI_D[x] valid before SPI_CLK active edge(1) 3.02 ns
5 th(SPICLK-MISO) Hold time, SPI_D[x] valid after SPI_CLK active edge(1) 2.76 ns
6 td(SPICLK-MOSI) Delay time, SPI_CLK active edge to SPI_D[x] transition(1) -4.62 4.62 ns
7 td(SCS-MOSI) Delay time, SPI_SCS[x] active edge to SPI_D[x] transition 4.62 ns
8 td(SCS-SPICLK) Delay time, SPI_SCS[x] active to SPI_CLK first edge(1) MASTER_PHA0(5) B-2.54(6) ns
MASTER_PHA1(5) A-2.54(7) ns
9 td(SPICLK-SCS) Delay time, SPI_CLK last edge to SPI_SCS[x] inactive(1) MASTER_PHA0(5) A-2.54(7) ns
MASTER_PHA1(5) B-2.54(6) ns
(1) This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are used to drive output data and capture input data.
(2) Related to the SPI_CLK maximum frequency.
(3) Maximum frequency = 48 MHz
(4) P = SPICLK period.
(5) SPI_CLK phase is programmable with the PHA bit of the SPI_CH(i)CONF register.
(6) B = (TCS + 0.5) * TSPICLKREF * Fratio, where TCS is a bit field of the SPI_CH(i)CONF register and Fratio = Even ≥2.
(7) When P = 20.8 ns, A = (TCS + 1) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register. When P > 20.8 ns, A = (TCS + 0.5) * Fratio * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register.
(8) Maximum frequency = 24 MHz
AM3894 AM3892 td_spi_mstr_xmit_sprs614.gifFigure 9-84 SPI Master Mode Transmit Timing
AM3894 AM3892 td_spi_mstr_rcv_sprs614.gifFigure 9-85 SPI Master Mode Receive Timing

Table 9-102 Timing Requirements for SPI - Slave Mode

(see Figure 9-86 and Figure 9-87)
NO. MIN MAX UNIT
1 tc(SPICLK) Cycle time, SPI_CLK(1)(2) 62.5(3) ns
2 tw(SPICLKL) Pulse duration, SPI_CLK low(1) 0.5*P - 3(4) ns
3 tw(SPICLKH) Pulse duration, SPI_CLK high(1) 0.5*P - 3(4) ns
4 tsu(MOSI-SPICLK) Setup time, SPI_D[x] valid before SPI_CLK active edge(1) 12.92 ns
5 th(SPICLK-MOSI) Hold time, SPI_D[x] valid after SPI_CLK active edge(1) 12.92 ns
6 td(SPICLK-MISO) Delay time, SPI_CLK active edge to SPI_D[x] transition(1) -4.00 17.1 ns
7 td(SCS-MISO) Delay time, SPI_SCS[x] active edge to SPI_D[x] transition(5) 17.1 ns
8 tsu(SCS-SPICLK) Setup time, SPI_SCS[x] valid before SPI_CLK first edge(1) 12.92 ns
9 th(SPICLK-SCS) Hold time, SPI_SCS[x] valid after SPI_CLK last edge(1) 12.92 ns
(1) This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are used to drive output data and capture input data.
(2) Related to the input maximum frequency supported by the SPI module.
(3) Maximum frequency = 16 MHz
(4) P = SPICLK period.
(5) PHA = 0; SPI_CLK phase is programmable with the PHA bit of the SPI_CH(i)CONF register.
AM3894 AM3892 td_spi_slv_xmit_sprs614.gifFigure 9-86 SPI Slave Mode Transmit Timing
AM3894 AM3892 td_spi_slv_rcv_sprs614.gifFigure 9-87 SPI Slave Mode Receive Timing

9.19 Timers

The device has seven 32-bit general-purpose (GP) timers that have the following features:

  • Timers 1-3 are for software use and do not have an external connection
  • Dedicated input trigger for capture mode and dedicated output trigger or pulse width modulation (PWM) signal
  • Interrupts generated on overflow, compare, and capture
  • Free-running 32-bit upward counter
  • Supported modes:
    • Compare and capture modes
    • Auto-reload mode
    • Start-stop mode
  • Timer[7:1] functional clock is sourced from either the 27-MHz system clock, 32.768-kHz RTC clock or the TCLKIN external timer input clock, as selected within the PRCM
  • On-the-fly read and write register (while counting)
  • Generates interrupts to the ARM CPUs.

The device has one system watchdog timer that has the following features:

  • Free-running 32-bit upward counter
  • On-the-fly read and write register (while counting)
  • Reset upon occurrence of a timer overflow condition
  • Two possible clock sources:
    • Internal 32.768-kHz clock derived from 27-MHz system clock.
    • External clock input on the CLKIN32 input pin.

The watchdog timer is used to provide a recovery mechanism for the device in the event of a fault condition, such as a non-exiting code loop.

For more detailed information, see the Timers chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.19.1 Timer Peripheral Register Descriptions

Table 9-103 Timer1-7 Registers(1)

TIMER1 HEX ADDRESS TIMER2 HEX ADDRESS TIMER3 HEX ADDRESS TIMER4 HEX ADDRESS TIMER5 HEX ADDRESS TIMER6 HEX ADDRESS TIMER7 HEX ADDRESS ACRONYM REGISTER NAME
0x4802 E000 0x4804 0000 0x4804 2000 0x4804 4000 0x4804 6000 0x4804 8000 0x4804 A000 TIDR Identification
0x4802 E010 0x4804 0010 0x4804 2010 0x4804 4010 0x4804 6010 0x4804 8010 0x4804 A010 TIOCP_CFG Timer OCP Configuration
0x4802 E020 0x4804 0020 0x4804 2020 0x4804 4020 0x4804 6020 0x4804 8020 0x4804 A020 IRQ_EOI Timer IRQ End-Of-Interrupt
0x4802 E024 0x4804 0024 0x4804 2024 0x4804 4024 0x4804 6024 0x4804 8024 0x4804 A024 IRQSTATUS_RAW Timer IRQSTATUS Raw
0x4802 E028 0x4804 0028 0x4804 2028 0x4804 4028 0x4804 6028 0x4804 8028 0x4804 A028 IRQSTATUS Timer IRQSTATUS
0x4802 E02C 0x4804 002C 0x4804 202C 0x4804 402C 0x4804 602C 0x4804 802C 0x4804 A02C IRQSTATUS_SET Timer IRQENABLE Set
0x4802 E030 0x4804 0030 0x4804 2030 0x4804 4030 0x4804 6030 0x4804 8030 0x4804 A030 IRQSTATUS_CLR Timer IRQENABLE Clear
0x4802 E034 0x4804 0034 0x4804 2034 0x4804 4034 0x4804 6034 0x4804 8034 0x4804 A034 IRQWAKEEN Timer IRQ Wakeup Enable
0x4802 E038 0x4804 0038 0x4804 2038 0x4804 4038 0x4804 6038 0x4804 8038 0x4804 A038 TCLR Timer Control
0x4802 E03C 0x4804 003C 0x4804 203C 0x4804 403C 0x4804 603C 0x4804 803C 0x4804 A03C TCRR Timer Counter
0x4802 E040 0x4804 0040 0x4804 2040 0x4804 4040 0x4804 6040 0x4804 8040 0x4804 A040 TLDR Timer Load
0x4802 E044 0x4804 0044 0x4804 2044 0x4804 4044 0x4804 6044 0x4804 8044 0x4804 A044 TTGR Timer Trigger
0x4802 E048 0x4804 0048 0x4804 2048 0x4804 4048 0x4804 6048 0x4804 8048 0x4804 A048 TWPS Timer Write Posted Status
0x4802 E04C 0x4804 004C 0x4804 204C 0x4804 404C 0x4804 604C 0x4804 804C 0x4804 A04C TMAR Timer Match
0x4802 E050 0x4804 0050 0x4804 2050 0x4804 4050 0x4804 6050 0x4804 8050 0x4804 A050 TCAR1 Timer Capture
0x4802 E054 0x4804 0054 0x4804 2054 0x4804 4054 0x4804 6054 0x4804 8054 0x4804 A054 TSICR Timer Synchronous Interface Control
0x4802 E058 0x4804 0058 0x4804 2058 0x4804 4058 0x4804 6058 0x4804 8058 0x4804 A058 TCAR2 Timer Capture
(1) All Timer registers are: 32-bit register accessible in 16-bit mode and use little-endian addressing.

Table 9-104 Watchdog Timer Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x480C 2000 WIDR IP Revision Identifier
0x480C 2010 WDSC OCP interface parameters
0x480C 2014 WDST Status information
0x480C 2018 WISR Interrupt events pending
0x480C 201C WIER Interrupt events control
0x480C 2020 WWER Wakeup events control
0x480C 2024 WCLR Counter prescaler control
0x480C 2028 WCRR Internal counter value
0x480C 202C WLDR Timer load value
0x480C 2030 WTGR Watchdog counter reload
0x480C 2034 WWPS Write posting bits
0x480C 2044 WDLY Event detection delay value
0x480C 2048 WSPR Start-stop value
0x480C 2050 WIRQEOI Software End Of Interrupt
0x480C 2054 WIRQSTATRAW IRQ unmasked status
0x480C 2058 WIRQSTAT IRQ masked status
0x480C 205C WIRQENSET IRQ enable
0x480C 2060 WIRQENCLR IRQ enable clear
0x480C 2064 WIRQWAKEEN IRQ wakeup events control

9.19.2 Timer Electrical Data and Timing

Table 9-105 Timing Requirements for Timer

(see Figure 9-88)
NO. MIN MAX UNIT
1 tw(EVTIH) Pulse duration, high 4P(1) ns
2 tw(EVTIL) Pulse duration, low 4P(1) ns
(1) P = module clock.

Table 9-106 Switching Characteristics Over Recommended Operating Conditions for Timer

(see Figure 9-88)
NO. PARAMETER MIN MAX UNIT
3 tw(EVTOH) Pulse duration, high 4P-3(1) ns
4 tw(EVTOL) Pulse duration, low 4P-3(1) ns
(1) P = module clock.
AM3894 AM3892 td_timer_sprs614.gifFigure 9-88 Timer Timing

9.20 Universal Asynchronous Receiver and Transmitter (UART)

The UART performs serial-to-parallel conversions on data received from a peripheral device and parallel-to-serial conversion on data received from the CPU. The device provides up to three UART peripheral interfaces, depending on the selected pin multiplexing.

Each UART has the following features:

  • Selectable UART, IrDA (SIR, MIR) and CIR modes
  • Dual 64-entry FIFOs for received and transmitted data payload
  • Programmable and selectable transmit and receive FIFO trigger levels for DMA and interrupt generation
  • Baud-rate generation based upon programmable divisors N (N=1…16384)
  • Two DMA requests and one interrupt request to the system
  • Can connect to any RS-232 compliant device.

UART functions include:

  • Baud-rate up to 3.6 Mbps
  • Programmable serial interfaces characteristics
    • 5, 6, 7, or 8-bit characters
    • Even, odd, or no parity-bit generation and detection
    • 1, 1.5, or 2 stop-bit generation
    • Flow control: hardware (RTS and CTS) or software (XON and XOFF)
  • Additional modem control functions (UART0_DTR, UART0_DSR, UART0_DCD, and UART0_RIN) for UART0 only; UART1 and UART2 do not support full-flow control signaling.

IR-IrDA functions include:

  • Support of IrDA 1.4 slow infrared (SIR, baud-rate up to 115.2 Kbps), medium infrared (MIR, baud-rate up to 1.152 Mbps) and fast infrared (FIR baud-rate up to 4.0 Mbps) communications
  • Supports framing error, cyclic redundancy check (CRC) error, illegal symbol (FIR), and abort pattern (SIR, MIR) detection
  • 8-entry status FIFO (with selectable trigger levels) available to monitor frame length and frame errors.

IR-CIR functions include:

  • Consumer infrared (CIR) remote control mode with programmable data encoding
  • Free data format (supports any remote control private standards)
  • Selectable bit rate and configurable carrier frequency.

For more detailed information on the UART peripheral, see the UART chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7).

9.20.1 UART Peripheral Register Descriptions

Table 9-107 lists the UART register name summary. Table 9-108 shows the UART registers along with their configuration requirements.

Table 9-107 UART Register Summary

ACRONYM REGISTER NAME ACRONYM REGISTER NAME
RHR Receive Holding RXFLH Receive Frame Length High
THR Transmit Holding BLR BOF Control
IER Interrupt Enable ACREG Auxilliary Control
IIR Interrupt Identification SCR Supplementary Control
FCR FIFO Control SSR Supplementary Status
LCR Line Control EBLR BOF Length
MCR Modem Control MVR Module Version
LSR Line Status SYSC System Configuration
MSR Modem Status SYSS System Status
SPR Scratchpad WER Wake-up Enable
TCR Transmission Control CFPS Carrier Frequency Prescaler
TLR Trigger Level DLL Divisor Latch Low
MDR1 Mode Definition 1 DLH Divisor Latch High
MDR2 Mode Definition 2 UASR UART Autobauding Status
SFLSR Status FIFO Line Status EFR Enhanced Feature
RESUME Resume XON1 UART XON1 Character
SFREGL Status FIFO Low XON2 UART XON2 Character
SFREGH Status FIFO High XOFF1 UART XOFF1 Character
TXFLL Transmit Frame Length Low XOFF2 UART XOFF2 Character
TXFLH Transmit Frame Length High ADDR1 IrDA Address 1
RXFLL Receive Frame Length Low ADDR2 IrDA Address 2

Table 9-108 UART Registers Configuration Requirements(1)(2)(3)

UART0 HEX ADDRESS UART1 HEX ADDRESS UART2 HEX ADDRESS REGISTER
LCR[7] = 0 LCR[7] = 1 and LCR[7:0] ≠ 0xBF LCR[7:0] = 0xBF
READ WRITE READ WRITE READ WRITE
0x4802 0000 0x4802 2000 0x4802 4000 RHR THR DLL DLL DLL DLL
0x4802 0004 0x4802 2004 0x4802 4004 IER IER DLH DLH DLH DLH
0x4802 0008 0x4802 2008 0x4802 4008 IIR FCR IIR FCR EFR EFR
0x4802 000C 0x4802 200C 0x4802 400C LCR LCR LCR LCR LCR LCR
0x4802 0010 0x4802 2010 0x4802 4010 MCR MCR MCR MCR XON1 or
ADDR1
XON1 or
ADDR1
0x4802 0014 0x4802 2014 0x4802 4014 LSR - LSR - XON2 or
ADDR2
XON2 or
ADDR2
0x4802 0018 0x4802 2018 0x4802 4018 MSR or TCR TCR MSR or TCR TCR XOFF1 or
TCR
XOFF1 or
TCR
0x4802 001C 0x4802 201C 0x4802 401C SPR orTLR SPR orTLR SPR or TLR SPR orTLR XOFF2 or
TLR
XOFF2 or
TLR
0x4802 0020 0x4802 2020 0x4802 4020 MDR1 MDR1 MDR1 MDR1 MDR1 MDR1
0x4802 0024 0x4802 2024 0x4802 4024 MDR2 MDR2 MDR2 MDR2 MDR2 MDR2
0x4802 0028 0x4802 2028 0x4802 4028 SFLSR TXFLL SFLSR TXFLL SFLSR TXFLL
0x4802 002C 0x4802 202C 0x4802 402C RESUME TXFLH RESUME TXFLH RESUME TXFLH
0x4802 0030 0x4802 2030 0x4802 4030 SFREGL RXFLL SFREGL RXFLL SFREGL RXFLL
0x4802 0034 0x4802 2034 0x4802 4034 SFREGH RXFLH SFREGH RXFLH SFREGH RXFLH
0x4802 0038 0x4802 2038 0x4802 4038 BLR BLR UASR - UASR -
0x4802 003C 0x4802 203C 0x4802 403C ACREG ACREG - - - -
0x4802 0040 0x4802 2040 0x4802 4040 SCR SCR SCR SCR SCR SCR
0x4802 0044 0x4802 2044 0x4802 4044 SSR SSR[2] SSR SSR[2] SSR SSR[2]
0x4802 0048 0x4802 2048 0x4802 4048 EBLR EBLR - - - -
0x4802 004C 0x4802 204C 0x4802 404C - - - - - -
0x4802 0050 0x4802 2050 0x4802 4050 MVR - MVR - MVR -
0x4802 0054 0x4802 2054 0x4802 4054 SYSC SYSC SYSC SYSC SYSC SYSC
0x4802 0058 0x4802 2058 0x4802 4058 SYSS SYSS SYSS
0x4802 005C 0x4802 205C 0x4802 405C WER WER WER WER WER WER
0x4802 0060 0x4802 2060 0x4802 4060 CFPS CFPS CFPS CFPS CFPS CFPS
0x4802 0064 - 0x4802 00C4 0x4802 2064 - 0x4802 20C4 0x4802 4064 - 0x4802 40C4 - - - - - -
(1) The transmission control register (TCR) and the trigger level register (TLR) are accessible only when EFR[4]=1 and MCR[6]=1.
(2) MCR[7:5] and FCR[5:4] can only be written when EFR[4]=1.
(3) In UART modes, IER[7:4] can only be written when EFR[4]=1. In IrDA and CIR modes, EFR[4] has no impact on the access to IER[7:4].

9.20.2 UART Electrical Data and Timing

Table 9-109 Timing Requirements for UART

(see Figure 9-89)
NO. MIN MAX UNIT
4 tw(RX) Pulse width, receive data bit, 15 pF, 30 pF, 100 pF high or low 0.96U(1) 1.05U(1) ns
5 tw(CTS) Pulse width, receive start bit, 15 pF, 30 pF, 100 pF high or low 0.96U(1) 1.05U(1) ns
td(RTS-TX) Delay time, transmit start bit to transmit data P(2) ns
td(CTS-TX) Delay time, receive start bit to transmit data P(2) ns
(1) U = UART baud time = 1/programmed baud rate.
(2) P = clock period of the reference clock (FCLK, usually 48 MHz).

Table 9-110 Switching Characteristics Over Recommended Operating Conditions for UART

(see Figure 9-89)
NO. PARAMETER MIN MAX UNIT
f(baud) Maximum programmable baud rate 15 pF 5 MHz
30 pF 0.23
100 pF 0.115
2 tw(TX) Pulse width, transmit data bit, 15 pF, 30 pF, 100 pF high or low U - 2(1) U + 2(1) ns
3 tw(RTS) Pulse width, transmit start bit, 15 pF, 30 pF, 100 pF high or low U - 2(1) U + 2(1) ns
(1) U = UART baud time = 1/programmed baud rate.
AM3894 AM3892 td_uart_sprs614.gifFigure 9-89 UART Timing

9.21 Universal Serial Bus (USB2.0)

The device includes two USB2.0 modules which support the Universal Serial Bus Specification Revision 2.0. The following are some of the major USB features that are supported:

  • USB 2.0 peripheral at high speed (HS: 480 Mbps) and full speed (FS: 12 Mbps)
  • USB 2.0 host at HS, FS, and low speed (LS: 1.5 Mbps)
  • Each endpoint (other than endpoint 0, control only) can support all transfer modes (control, bulk, interrupt, and isochronous)
  • Supports high-bandwidth ISO mode
  • Supports 16 Transmit (TX) and 16 Receive (RX) endpoints including endpoint 0
  • FIFO RAM - 32K endpoint - Programmable size
  • Includes two integrated PHYs; requires a low-jitter 24-MHz source clock for its PLL
  • RNDIS-like mode for terminating RNDIS-type protocols without using short-packet termination for support of MSC applications.

The USB2.0 modules do not support the following features:

  • On-chip charge pump (VBUS power must be generated external to the device)
  • RNDIS mode acceleration for USB sizes that are not multiples of 64 bytes
  • Endpoint max USB packet sizes that do not conform to the USB2.0 spec (for FS and LS: 8, 16, 32, 64, and 1023 are defined; for HS: 64, 128, 512, and 1024 are defined).

For more detailed information on the USB2.0 peripheral, see the USB2.0 chapter in the AM389x Sitara ARM Processors Technical Reference Manual (literature number SPRUGX7). For detailed information on USB board design and layout guidelines, see the USB 2.0 Board Design and Layout Guidelines application report (literature number SPRAAR7). For general information on PCB layout, see the DM816xx Easy CYG Package PCB Escape Routing application report (literature number SPRABK6).

9.21.1 USB2.0 Peripheral Register Descriptions

Table 9-111 USB2.0 Submodules

SUBMODULE ADDRESS OFFSET SUBMODULE NAME
0x0000 USBSS registers
0x1000 USB0 controller registers
0x1800 USB1 controller registers
0x2000 CPPI DMA controller registers
0x3000 CPPI DMA scheduler registers
0x4000 CPPI DMA Queue Manager registers

Table 9-112 USB Subsystem (USBSS) Registers(1)

HEX ADDRESS ACRONYM REGISTER NAME
0x4740 0000 REVREG USBSS REVISION
0x4740 0004 - 0x4740 000C - Reserved
0x4740 0010 SYSCONFIG USBSS SYSCONFIG
0x4740 0014 - 0x4740 001C - Reserved
0x4740 0020 EOI USBSS IRQ_EOI
0x4740 0024 IRQSTATRAW USBSS IRQ_STATUS_RAW
0x4740 0028 IRQSTAT USBSS IRQ_STATUS
0x4740 002C IRQENABLER USBSS IRQ_ENABLE_SET
0x4740 0030 IRQCLEARR USBSS IRQ_ENABLE_CLR
0x4740 0034 - 0x4740 00FC - Reserved
0x4740 0100 IRQDMATHOLDTX00 USBSS IRQ_DMA_THRESHOLD_TX0_0
0x4740 0104 IRQDMATHOLDTX01 USBSS IRQ_DMA_THRESHOLD_TX0_1
0x4740 0108 IRQDMATHOLDTX02 USBSS IRQ_DMA_THRESHOLD_TX0_2
0x4740 010C IRQDMATHOLDTX03 USBSS IRQ_DMA_THRESHOLD_TX0_3
0x4740 0110 IRQDMATHOLDRX00 USBSS IRQ_DMA_THRESHOLD_RX0_0
0x4740 0114 IRQDMATHOLDRX01 USBSS IRQ_DMA_THRESHOLD_RX0_1
0x4740 0118 IRQDMATHOLDRX02 USBSS IRQ_DMA_THRESHOLD_RX0_2
0x4740 011C IRQDMATHOLDRX03 USBSS IRQ_DMA_THRESHOLD_RX0_3
0x4740 0120 IRQDMATHOLDTX10 USBSS IRQ_DMA_THRESHOLD_TX1_0
0x4740 0124 IRQDMATHOLDTX11 USBSS IRQ_DMA_THRESHOLD_TX1_1
0x4740 0128 IRQDMATHOLDTX12 USBSS IRQ_DMA_THRESHOLD_TX1_2
0x4740 012C IRQDMATHOLDTX13 USBSS IRQ_DMA_THRESHOLD_TX1_3
0x4740 0130 IRQDMATHOLDRX10 USBSS IRQ_DMA_THRESHOLD_RX1_0
0x4740 0134 IRQDMATHOLDRX11 USBSS IRQ_DMA_THRESHOLD_RX1_1
0x4740 0138 IRQDMATHOLDRX12 USBSS IRQ_DMA_THRESHOLD_RX1_2
0x4740 013C IRQDMATHOLDRX13 USBSS IRQ_DMA_THRESHOLD_RX1_3
0x4740 0140 IRQDMAENABLE0 USBSS IRQ_DMA_ENABLE_0
0x4740 0144 IRQDMAENABLE1 USBSS IRQ_DMA_ENABLE_1
0x4740 0148 - 0x4740 01FC - Reserved
0x4740 0200 IRQFRAMETHOLDTX00 USBSS IRQ_FRAME_THRESHOLD_TX0_0
0x4740 0204 IRQFRAMETHOLDTX01 USBSS IRQ_FRAME_THRESHOLD_TX0_1
0x4740 0208 IRQFRAMETHOLDTX02 USBSS IRQ_FRAME_THRESHOLD_TX0_2
0x4740 020C IRQFRAMETHOLDTX03 USBSS IRQ_FRAME_THRESHOLD_TX0_3
0x4740 0210 IRQFRAMETHOLDRX00 USBSS IRQ_FRAME_THRESHOLD_RX0_0
0x4740 0214 IRQFRAMETHOLDRX01 USBSS IRQ_FRAME_THRESHOLD_RX0_1
0x4740 0218 IRQFRAMETHOLDRX02 USBSS IRQ_FRAME_THRESHOLD_RX0_2
0x4740 021C IRQFRAMETHOLDRX03 USBSS IRQ_FRAME_THRESHOLD_RX0_3
0x4740 0220 IRQFRAMETHOLDTX10 USBSS IRQ_FRAME_THRESHOLD_TX1_0
0x4740 0224 IRQFRAMETHOLDTX11 USBSS IRQ_FRAME_THRESHOLD_TX1_1
0x4740 0228 IRQFRAMETHOLDTX12 USBSS IRQ_FRAME_THRESHOLD_TX1_2
0x4740 022C IRQFRAMETHOLDTX13 USBSS IRQ_FRAME_THRESHOLD_TX1_3
0x4740 0230 IRQFRAMETHOLDRX10 USBSS IRQ_FRAME_THRESHOLD_RX1_0
0x4740 0234 IRQFRAMETHOLDRX11 USBSS IRQ_FRAME_THRESHOLD_RX1_1
0x4740 0238 IRQFRAMETHOLDRX12 USBSS IRQ_FRAME_THRESHOLD_RX1_2
0x4740 023C IRQFRAMETHOLDRX13 USBSS IRQ_FRAME_THRESHOLD_RX1_3
0x4740 0240 IRQFRAMEENABLE0 USBSS IRQ_FRAME_ENABLE_0
0x4740 0244 IRQFRAMEENABLE1 USBSS IRQ_FRAME_ENABLE_1
0x4740 0248 - 0x4740 0FFC - Reserved
(1) USBSS registers contain the registers that are used to control at the global level and apply to all submodules.

Table 9-113 USB0 Controller Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x4740 1000 USB0REV USB0 REVISION
0x4740 1004 - 0x4740 1010 - Reserved
0x4740 1014 USB0CTRL USB0 Control
0x4740 1018 USB0STAT USB0 Status
0x4740 101C - Reserved
0x4740 1020 USB0IRQMSTAT USB0 IRQ_MERGED_STATUS
0x4740 1024 USB0IRQEOI USB0 IRQ_EOI
0x4740 1028 USB0IRQSTATRAW0 USB0 IRQ_STATUS_RAW_0
0x4740 102C USB0IRQSTATRAW1 USB0 IRQ_STATUS_RAW_1
0x4740 1030 USB0IRQSTAT0 USB0 IRQ_STATUS_0
0x4740 1034 USB0IRQSTAT1 USB0 IRQ_STATUS_1
0x4740 1038 USB0IRQENABLESET0 USB0 IRQ_ENABLE_SET_0
0x4740 103C USB0IRQENABLESET1 USB0 IRQ_ENABLE_SET_1
0x4740 1040 USB0IRQENABLECLR0 USB0 IRQ_ENABLE_CLR_0
0x4740 1044 USB0IRQENABLECLR1 USB0 IRQ_ENABLE_CLR_1
0x4740 1048 - 0x4740 106C - Reserved
0x4740 1070 USB0TXMODE USB0 Tx Mode
0x4740 1074 USB0RXMODE USB0 Rx Mode
0x4740 1078 - 0x4740 107C - Reserved
0x4740 1080 USB0GENRNDISEP1 USB0 Generic RNDIS Size EP1
0x4740 1084 USB0GENRNDISEP2 USB0 Generic RNDIS Size EP2
0x4740 1088 USB0GENRNDISEP3 USB0 Generic RNDIS Size EP3
0x4740 108C USB0GENRNDISEP4 USB0 Generic RNDIS Size EP4
0x4740 1090 USB0GENRNDISEP5 USB0 Generic RNDIS Size EP5
0x4740 1094 USB0GENRNDISEP6 USB0 Generic RNDIS Size EP6
0x4740 1098 USB0GENRNDISEP7 USB0 Generic RNDIS Size EP7
0x4740 109C USB0GENRNDISEP8 USB0 Generic RNDIS Size EP8
0x4740 10A0 USB0GENRNDISEP9 USB0 Generic RNDIS Size EP9
0x4740 10A4 USB0GENRNDISEP10 USB0 Generic RNDIS Size EP10
0x4740 10A8 USB0GENRNDISEP11 USB0 Generic RNDIS Size EP11
0x4740 10AC USB0GENRNDISEP12 USB0 Generic RNDIS Size EP12
0x4740 10B0 USB0GENRNDISEP13 USB0 Generic RNDIS Size EP13
0x4740 10B4 USB0GENRNDISEP14 USB0 Generic RNDIS Size EP14
0x4740 10B8 USB0GENRNDISEP15 USB0 Generic RNDIS Size EP15
0x4740 10BC - 0x4740 10CC - Reserved
0x4740 10D0 USB0AUTOREQ USB0 Auto Req
0x4740 10D4 USB0SRPFIXTIME USB0 SRP Fix Time
0x4740 10D8 USB0TDOWN USB0 Teardown
0x4740 10DC - Reserved
0x4740 10E0 USB0UTMI USB0 PHY UTMI
0x4740 10E4 USB0UTMILB USB0 MGC UTMI Loopback
0x4740 10E8 USB0MODE USB0 Mode
0x4740 10E8 - 0x4740 13FF - Reserved
0x4740 1400 - 0x4740 159C - USB0 Mentor Core Registers
0x4740 15A0 - 0x4740 17FC - Reserved

Table 9-114 USB1 Controller Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x4740 1800 USB1REV USB1 Revision
0x4740 1804 - 0x4740 1810 - Reserved
0x4740 1814 USB1CTRL USB1 Control
0x4740 1818 USB1STAT USB1 Status
0x4740 181C - Reserved
0x4740 1820 USB1IRQMSTAT USB1 IRQ_MERGED_STATUS
0x4740 1824 USB1IRQEOI USB1 IRQ_EOI
0x4740 1828 USB1IRQSTATRAW0 USB1 IRQ_STATUS_RAW_0
0x4740 182C USB1IRQSTATRAW1 USB1 IRQ_STATUS_RAW_1
0x4740 1830 USB1IRQSTAT0 USB1 IRQ_STATUS_0
0x4740 1834 USB1IRQSTAT1 USB1 IRQ_STATUS_1
0x4740 1838 USB1IRQENABLESET0 USB1 IRQ_ENABLE_SET_0
0x4740 183C USB1IRQENABLESET1 USB1 IRQ_ENABLE_SET_1
0x4740 1840 USB1IRQENABLECLR0 USB1 IRQ_ENABLE_CLR_0
0x4740 1844 USB1IRQENABLECLR1 USB1 IRQ_ENABLE_CLR_1
0x4740 1848 - 0x4740 186C - Reserved
0x4740 1870 USB1TXMODE USB1 Tx Mode
0x4740 1874 USB1RXMODE USB1 Rx Mode
0x4740 1878 - 0x4740 187C - Reserved
0x4740 1880 USB1GENRNDISEP1 USB1 Generic RNDIS Size EP1
0x4740 1884 USB1GENRNDISEP2 USB1 Generic RNDIS Size EP2
0x4740 1888 USB1GENRNDISEP3 USB1 Generic RNDIS Size EP3
0x4740 188C USB1GENRNDISEP4 USB1 Generic RNDIS Size EP4
0x4740 1890 USB1GENRNDISEP5 USB1 Generic RNDIS Size EP5
0x4740 1894 USB1GENRNDISEP6 USB1 Generic RNDIS Size EP6
0x4740 1898 USB1GENRNDISEP7 USB1 Generic RNDIS Size EP7
0x4740 189C USB1GENRNDISEP8 USB1 Generic RNDIS Size EP8
0x4740 18A0 USB1GENRNDISEP9 USB1 Generic RNDIS Size EP9
0x4740 18A4 USB1GENRNDISEP10 USB1 Generic RNDIS Size EP10
0x4740 18A8 USB1GENRNDISEP11 USB1 Generic RNDIS Size EP11
0x4740 18AC USB1GENRNDISEP12 USB1 Generic RNDIS Size EP12
0x4740 18B0 USB1GENRNDISEP13 USB1 Generic RNDIS Size EP13
0x4740 18B4 USB1GENRNDISEP14 USB1 Generic RNDIS Size EP14
0x4740 18B8 USB1GENRNDISEP15 USB1 Generic RNDIS Size EP15
0x4740 18BC - 0x4740 18CC - Reserved
0x4740 18D0 USB1AUTOREQ USB1 Auto Req
0x4740 18D4 USB1SRPFIXTIME USB1 SRP Fix Time
0x4740 18D8 USB1TDOWN USB1 Teardown
0x4740 18DC - Reserved
0x4740 18E0 USB1UTMI USB1 PHY UTMI
0x4740 18E4 USB1UTMILB USB1 MGC UTMI Loopback
0x4740 18E8 USB1MODE USB1 Mode
0x4740 18E8 - 0x4740 1BFF - Reserved
0x4740 1C00 - 0x4740 1D9C - USB1 Mentor Core Registers
0x4740 1DA0 - 0x4740 1FFC - Reserved

Table 9-115 CPPI DMA Controller Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x4740 2000 DMAREVID Revision
0x4740 2004 TDFDQ Teardown Free Descriptor Queue Control
0x4740 2008 DMAEMU Emulation Control
0x4740 2010 DMAMEM1BA CPPI Mem1 Base Address
0x4740 2014 DMAMEM1MASK CPPI Mem1 Mask Address
0x4740 200C - 0x4740 27FF - Reserved
0x4740 2800 TXGCR0 Tx Channel 0 Global Configuration
0x4740 2804 - Reserved
0x4740 2808 RXGCR0 Rx Channel 0 Global Configuration
0x4740 280C RXHPCRA0 Rx Channel 0 Host Packet Configuration A
0x4740 2810 RXHPCRB0 Rx Channel 0 Host Packet Configuration B
0x4740 2814 - 0x4740 281C - Reserved
0x4740 2820 TXGCR1 Tx Channel 1 Global Configuration
0x4740 2824 - Reserved
0x4740 2828 RXGCR1 Rx Channel 1 Global Configuration
0x4740 282C RXHPCRA1 Rx Channel 1 Host Packet Configuration A
0x4740 2830 RXHPCRB1 Rx Channel 1 Host Packet Configuration B
0x4740 2834 - 0x4740 283C - Reserved
0x4740 2840 TXGCR2 Tx Channel 2 Global Configuration
0x4740 2844 - Reserved
0x4740 2848 RXGCR2 Rx Channel 2 Global Configuration
0x4740 284C RXHPCRA2 Rx Channel 2 Host Packet Configuration A
0x4740 2850 RXHPCRB2 Rx Channel 2 Host Packet Configuration B
0x4740 2854 - 0x4740 285F - Reserved
0x4740 2860 TXGCR3 Tx Channel 3 Global Configuration
0x4740 2864 - Reserved
0x4740 2868 RXGCR3 Rx Channel 3 Global Configuration
0x4740 286C RXHPCRA3 Rx Channel 3 Host Packet Configuration A
0x4740 2870 RXHPCRB3 Rx Channel 3 Host Packet Configuration B
0x4740 2880 - 0x4740 2B9F - ...
0x4740 2BA0 TXGCR29 Tx Channel 29 Global Configuration
0x4740 2BA4 - Reserved
0x4740 2BA8 RXGCR29 Rx Channel 29 Global Configuration
0x4740 2BAC RXHPCRA29 Rx Channel 29 Host Packet Configuration A
0x4740 2BB0 RXHPCRB29 Rx Channel 29 Host Packet Configuration B
0x4740 2BB4 - 0x4740 2FFF - Reserved

Table 9-116 CPPI DMA Scheduler Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x4740 3000 DMA_SCHED_CTRL CPPI DMA Scheduler Control Register
0x4740 3804 - 0x4740 38FF - Reserved
0x4740 3800 WORD0 CPPI DMA Scheduler Table Word 0
0x4740 3804 WORD1 CPPI DMA Scheduler Table Word 1
0x4740 38F8 WORD62 CPPI DMA Scheduler Table Word 62
0x4740 38FC WORD63 CPPI DMA Scheduler Table Word 63
0x4740 38FF - 0x4740 3FFF - Reserved

Table 9-117 CPPI DMA Queue Manager Registers

HEX ADDRESS ACRONYM REGISTER NAME
0x4740 4000 QMGRREVID Queue Manager Revision
0x4740 4004 - Reserved
0x4740 4008 DIVERSION Queue Manager Queue Diversion
0x4740 4020 FDBSC0 Queue Manager Free Descriptor and Buffer Starvation Count 0
0x4740 4024 FDBSC1 Queue Manager Free Descriptor and Buffer Starvation Count 1
0x4740 4028 FDBSC2 Queue Manager Free Descriptor and Buffer Starvation Count 2
0x4740 402C FDBSC3 Queue Manager Free Descriptor and Buffer Starvation Count 3
0x4740 4030 FDBSC4 Queue Manager Free Descriptor and Buffer Starvation Count 4
0x4740 4034 FDBSC5 Queue Manager Free Descriptor and Buffer Starvation Count 5
0x4740 4038 FDBSC6 Queue Manager Free Descriptor and Buffer Starvation Count 6
0x4740 403C FDBSC7 Queue Manager Free Descriptor and Buffer Starvation Count 7
0x4740 4030 - 0x4740 407C - Reserved
0x4740 4080 LRAM0BASE Queue Manager Linking RAM Region 0 Base Address
0x4740 4084 LRAM0SIZE Queue Manager Linking RAM Region 0 Size
0x4740 4088 LRAM1BASE Queue Manager Linking RAM Region 1 Base Address
0x4740 408C - Reserved
0x4740 4090 PEND0 Queue Manager Queue Pending 0
0x4740 4094 PEND1 Queue Manager Queue Pending 1
0x4740 4098 PEND2 Queue Manager Queue Pending 2
0x4740 409C PEND3 Queue Manager Queue Pending 3
0x4740 40A0 PEND4 Queue Manager Queue Pending 4
0x4740 40A4 - 0x4740 4FFF - Reserved
0x4740 5000 + 16xR QMEMRBASEr Memory Region R Base Address (R ranges from 0 to 15)
0x4740 5000 + 16xR + 4 QMEMRCTRLr Memory Region R Control (R ranges from 0 to 15)
0x4740 50F8 - 0x4740 5FFF - Reserved
0x4740 6000 + 16xN CTRLAn Queue N Register A (N ranges from 0 to 155)
0x4740 6004 + 16xN CTRLBn Queue N Register B (N ranges from 0 to 155)
0x4740 6008 + 16xN CTRLCn Queue N Register C (N ranges from 0 to 155)
0x4740 600C + 16xN CTRLDn Queue N Register D (N ranges from 0 to 155)
0x4740 69C0 - 0x4740 6FFF - Reserved
0x4740 7000 + 16xN QSTATAn Queue N Status A (N ranges from 0 to 155)
0x4740 7004 + 16xN QSTATBn Queue N Status B (N ranges from 0 to 155)
0x4740 7008 + 16xN QSTATCn Queue N Status C (N ranges from 0 to 155)
0x4740 700C + 16xN - Reserved
0x4740 79C0 - 0x4740 7FFF - Reserved

9.21.2 USB2.0 Electrical Data and Timing

Table 9-118 Switching Characteristics Over Recommended Operating Conditions for USB2.0

(see Figure 9-90)
NO. PARAMETER LOW SPEED
1.5 Mbps
FULL SPEED
12 Mbps
HIGH SPEED
480 Mbps
UNIT
MIN MAX MIN MAX MIN MAX
1 tr(D) Rise time, USB_DP and USB_DN signals(1) 75 300 4 20 0.5 ns
2 tf(D) Fall time, USB_DP and USB_DN signals(1) 75 300 4 20 0.5 ns
3 trfM Rise and Fall time, matching(2) 80 125 90 111.11 %
4 VCRS Output signal cross-over voltage(1) 1.3 2 1.3 2 V
5 tjr(source)NT Source (Host) Driver jitter, next transition 2 2  (4) ns
tjr(FUNC)NT Function Driver jitter, next transition 25 2  (4) ns
6 tjr(source)PT Source (Host) Driver jitter, paired transition(3) 1 1  (4) ns
tjr(FUNC)PT Function Driver jitter, paired transition 10 1  (4) ns
7 tw(EOPT) Pulse duration, EOP transmitter 1250 1500 160 175 ns
8 tw(EOPR) Pulse duration, EOP receiver 670 82 ns
9 t(DRATE) Data Rate 1.5 12 480 Mb per s
10 ZDRV Driver Output Resistance 28 49.5 40.5 49.5 Ω
11 USB_R1 USB reference resistor 43.8 44.6 43.8 44.6 43.8 44.6 Ω
(1) Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF
(2) tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.]
(3) tjr = tpx(1) - tpx(0)
(4) For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7, Electrical.
AM3894 AM3892 td_usbxrcv_prs403.gifFigure 9-90 USB2.0 Integrated Transceiver Interface Timing
AM3894 AM3892 usb_rrr_sprs614.gif
A. Place the 44.2-Ω ± 1% as close to the device as possible.
Figure 9-91 USB Reference Resistor Routing