SPRS999 August   2017 AM5718-HIREL

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Device Comparison
    1. 3.1 Device Comparison Table
  4. Terminal Configuration and Functions
    1. 4.1 Terminal Assignment
      1. 4.1.1 Unused Balls Connection Requirements
    2. 4.2 Ball Characteristics
    3. 4.3 Multiplexing Characteristics
    4. 4.4 Signal Descriptions
      1. 4.4.1  Video Input Ports (VIP)
      2. 4.4.2  Display Subsystem - Video Output Ports
      3. 4.4.3  Display Subsystem - High-Definition Multimedia Interface (HDMI)
      4. 4.4.4  Camera Serial Interface 2 CAL bridge (CSI2)
      5. 4.4.5  External Memory Interface (EMIF)
      6. 4.4.6  General-Purpose Memory Controller (GPMC)
      7. 4.4.7  Timers
      8. 4.4.8  Inter-Integrated Circuit Interface (I2C)
      9. 4.4.9  HDQ / 1-Wire Interface (HDQ1W)
      10. 4.4.10 Universal Asynchronous Receiver Transmitter (UART)
      11. 4.4.11 Multichannel Serial Peripheral Interface (McSPI)
      12. 4.4.12 Quad Serial Peripheral Interface (QSPI)
      13. 4.4.13 Multichannel Audio Serial Port (McASP)
      14. 4.4.14 Universal Serial Bus (USB)
      15. 4.4.15 SATA
      16. 4.4.16 Peripheral Component Interconnect Express (PCIe)
      17. 4.4.17 Controller Area Network Interface (DCAN)
      18. 4.4.18 Ethernet Interface (GMAC_SW)
      19. 4.4.19 Media Local Bus (MLB) Interface
      20. 4.4.20 eMMC/SD/SDIO
      21. 4.4.21 General-Purpose Interface (GPIO)
      22. 4.4.22 Keyboard controller (KBD)
      23. 4.4.23 Pulse Width Modulation (PWM) Interface
      24. 4.4.24 Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU-ICSS)
      25. 4.4.25 Test Interfaces
      26. 4.4.26 System and Miscellaneous
        1. 4.4.26.1 Sysboot
        2. 4.4.26.2 Power, Reset, and Clock Management (PRCM)
        3. 4.4.26.3 Real-Time Clock (RTC) Interface
        4. 4.4.26.4 System Direct Memory Access (SDMA)
        5. 4.4.26.5 Interrupt Controllers (INTC)
        6. 4.4.26.6 Observability
      27. 4.4.27 Power Supplies
  5. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Power On Hours (POH) Limits
    4. 5.4 Recommended Operating Conditions
    5. 5.5 Operating Performance Points
      1. 5.5.1 AVS and ABB Requirements
      2. 5.5.2 Voltage And Core Clock Specifications
      3. 5.5.3 Maximum Supported Frequency
    6. 5.6 Power Consumption Summary
    7. 5.7 Electrical Characteristics
      1. 5.7.1  LVCMOS DDR DC Electrical Characteristics
      2. 5.7.2  HDMIPHY DC Electrical Characteristics
      3. 5.7.3  Dual Voltage LVCMOS I2C DC Electrical Characteristics
      4. 5.7.4  IQ1833 Buffers DC Electrical Characteristics
      5. 5.7.5  IHHV1833 Buffers DC Electrical Characteristics
      6. 5.7.6  LVCMOS OSC Buffers DC Electrical Characteristics
      7. 5.7.7  LVCMOS CSI2 DC Electrical Characteristics
      8. 5.7.8  BMLB18 Buffers DC Electrical Characteristics
      9. 5.7.9  BC1833IHHV Buffers DC Electrical Characteristics
      10. 5.7.10 USBPHY DC Electrical Characteristics
      11. 5.7.11 Dual Voltage SDIO1833 DC Electrical Characteristics
      12. 5.7.12 Dual Voltage LVCMOS DC Electrical Characteristics
      13. 5.7.13 SATAPHY DC Electrical Characteristics
      14. 5.7.14 SERDES DC Electrical Characteristics
    8. 5.8 Thermal Characteristics
      1. 5.8.1 Package Thermal Characteristics
    9. 5.9 Power Supply Sequences
  6. Clock Specifications
    1. 6.1 Input Clock Specifications
      1. 6.1.1 Input Clock Requirements
      2. 6.1.2 System Oscillator OSC0 Input Clock
        1. 6.1.2.1 OSC0 External Crystal
        2. 6.1.2.2 OSC0 Input Clock
      3. 6.1.3 Auxiliary Oscillator OSC1 Input Clock
        1. 6.1.3.1 OSC1 External Crystal
        2. 6.1.3.2 OSC1 Input Clock
      4. 6.1.4 RTC Oscillator Input Clock
        1. 6.1.4.1 RTC Oscillator External Crystal
        2. 6.1.4.2 RTC Oscillator Input Clock
    2. 6.2 DPLLs, DLLs Specifications
      1. 6.2.1 DPLL Characteristics
      2. 6.2.2 DLL Characteristics
  7. Timing Requirements and Switching Characteristics
    1. 7.1  Timing Test Conditions
    2. 7.2  Interface Clock Specifications
      1. 7.2.1 Interface Clock Terminology
      2. 7.2.2 Interface Clock Frequency
    3. 7.3  Timing Parameters and Information
      1. 7.3.1 Parameter Information
        1. 7.3.1.1 1.8V and 3.3V Signal Transition Levels
        2. 7.3.1.2 1.8V and 3.3V Signal Transition Rates
        3. 7.3.1.3 Timing Parameters and Board Routing Analysis
    4. 7.4  Recommended Clock and Control Signal Transition Behavior
    5. 7.5  Virtual and Manual I/O Timing Modes
    6. 7.6  Video Input Ports (VIP)
    7. 7.7  Display Subsystem - Video Output Ports
    8. 7.8  Display Subsystem - High-Definition Multimedia Interface (HDMI)
    9. 7.9  Camera Serial Interface 2 CAL bridge (CSI2)
      1. 7.9.1 CSI-2 MIPI D-PHY-1.5 V and 1.8 V
    10. 7.10 External Memory Interface (EMIF)
    11. 7.11 General-Purpose Memory Controller (GPMC)
      1. 7.11.1 GPMC/NOR Flash Interface Synchronous Timing
      2. 7.11.2 GPMC/NOR Flash Interface Asynchronous Timing
      3. 7.11.3 GPMC/NAND Flash Interface Asynchronous Timing
    12. 7.12 Timers
    13. 7.13 Inter-Integrated Circuit Interface (I2C)
    14. 7.14 HDQ / 1-Wire Interface (HDQ1W)
      1. 7.14.1 HDQ / 1-Wire - HDQ Mode
      2. 7.14.2 HDQ/1-Wire-1-Wire Mode
    15. 7.15 Universal Asynchronous Receiver Transmitter (UART)
    16. 7.16 Multichannel Serial Peripheral Interface (McSPI)
    17. 7.17 Quad Serial Peripheral Interface (QSPI)
    18. 7.18 Multichannel Audio Serial Port (McASP)
    19. 7.19 Universal Serial Bus (USB)
      1. 7.19.1 USB1 DRD PHY
      2. 7.19.2 USB2 PHY
    20. 7.20 Serial Advanced Technology Attachment (SATA)
    21. 7.21 Peripheral Component Interconnect Express (PCIe)
    22. 7.22 Controller Area Network Interface (DCAN)
    23. 7.23 Ethernet Interface (GMAC_SW)
      1. 7.23.1 GMAC MII Timings
      2. 7.23.2 GMAC MDIO Interface Timings
      3. 7.23.3 GMAC RMII Timings
      4. 7.23.4 GMAC RGMII Timings
    24. 7.24 eMMC/SD/SDIO
      1. 7.24.1 MMC1-SD Card Interface
        1. 7.24.1.1 Default speed, 4-bit data, SDR, half-cycle
        2. 7.24.1.2 High speed, 4-bit data, SDR, half-cycle
        3. 7.24.1.3 SDR12, 4-bit data, half-cycle
        4. 7.24.1.4 SDR25, 4-bit data, half-cycle
        5. 7.24.1.5 UHS-I SDR50, 4-bit data, half-cycle
        6. 7.24.1.6 UHS-I SDR104, 4-bit data, half-cycle
        7. 7.24.1.7 UHS-I DDR50, 4-bit data
      2. 7.24.2 MMC2 - eMMC
        1. 7.24.2.1 Standard JC64 SDR, 8-bit data, half cycle
        2. 7.24.2.2 High-speed JC64 SDR, 8-bit data, half cycle
        3. 7.24.2.3 High-speed HS200 JEDS84, 8-bit data, half cycle
        4. 7.24.2.4 High-speed JC64 DDR, 8-bit data
      3. 7.24.3 MMC3 and MMC4-SDIO/SD
        1. 7.24.3.1 MMC3 and MMC4, SD Default Speed
        2. 7.24.3.2 MMC3 and MMC4, SD High Speed
        3. 7.24.3.3 MMC3 and MMC4, SD and SDIO SDR12 Mode
        4. 7.24.3.4 MMC3 and MMC4, SD SDR25 Mode
        5. 7.24.3.5 MMC3 SDIO High-Speed UHS-I SDR50 Mode, Half Cycle
    25. 7.25 General-Purpose Interface (GPIO)
    26. 7.26 PRU-ICSS Interfaces
      1. 7.26.1 Programmable Real-Time Unit (PRU-ICSS PRU)
        1. 7.26.1.1 PRU-ICSS PRU Direct Input/Output Mode Electrical Data and Timing
        2. 7.26.1.2 PRU-ICSS PRU Parallel Capture Mode Electrical Data and Timing
        3. 7.26.1.3 PRU-ICSS PRU Shift Mode Electrical Data and Timing
        4. 7.26.1.4 PRU-ICSS PRU Sigma Delta and EnDAT Modes
      2. 7.26.2 PRU-ICSS EtherCAT (PRU-ICSS ECAT)
        1. 7.26.2.1 PRU-ICSS ECAT Electrical Data and Timing
      3. 7.26.3 PRU-ICSS MII_RT and Switch
        1. 7.26.3.1 PRU-ICSS MDIO Electrical Data and Timing
        2. 7.26.3.2 PRU-ICSS MII_RT Electrical Data and Timing
      4. 7.26.4 PRU-ICSS Universal Asynchronous Receiver Transmitter (PRU-ICSS UART)
      5. 7.26.5 PRU-ICSS Manual Functional Mapping
    27. 7.27 System and Miscellaneous interfaces
    28. 7.28 Test Interfaces
      1. 7.28.1 IEEE 1149.1 Standard-Test-Access Port (JTAG)
        1. 7.28.1.1 JTAG Electrical Data/Timing
      2. 7.28.2 Trace Port Interface Unit (TPIU)
        1. 7.28.2.1 TPIU PLL DDR Mode
  8. Applications, Implementation, and Layout
    1. 8.1 Power Supply Mapping
    2. 8.2 DDR3 Board Design and Layout Guidelines
      1. 8.2.1 DDR3 General Board Layout Guidelines
      2. 8.2.2 DDR3 Board Design and Layout Guidelines
        1. 8.2.2.1  Board Designs
        2. 8.2.2.2  DDR3 EMIF
        3. 8.2.2.3  DDR3 Device Combinations
        4. 8.2.2.4  DDR3 Interface Schematic
          1. 8.2.2.4.1 32-Bit DDR3 Interface
          2. 8.2.2.4.2 16-Bit DDR3 Interface
        5. 8.2.2.5  Compatible JEDEC DDR3 Devices
        6. 8.2.2.6  PCB Stackup
        7. 8.2.2.7  Placement
        8. 8.2.2.8  DDR3 Keepout Region
        9. 8.2.2.9  Bulk Bypass Capacitors
        10. 8.2.2.10 High-Speed Bypass Capacitors
          1. 8.2.2.10.1 Return Current Bypass Capacitors
        11. 8.2.2.11 Net Classes
        12. 8.2.2.12 DDR3 Signal Termination
        13. 8.2.2.13 VREF_DDR Routing
        14. 8.2.2.14 VTT
        15. 8.2.2.15 CK and ADDR_CTRL Topologies and Routing Definition
          1. 8.2.2.15.1 Four DDR3 Devices
            1. 8.2.2.15.1.1 CK and ADDR_CTRL Topologies, Four DDR3 Devices
            2. 8.2.2.15.1.2 CK and ADDR_CTRL Routing, Four DDR3 Devices
          2. 8.2.2.15.2 Two DDR3 Devices
            1. 8.2.2.15.2.1 CK and ADDR_CTRL Topologies, Two DDR3 Devices
            2. 8.2.2.15.2.2 CK and ADDR_CTRL Routing, Two DDR3 Devices
          3. 8.2.2.15.3 One DDR3 Device
            1. 8.2.2.15.3.1 CK and ADDR_CTRL Topologies, One DDR3 Device
            2. 8.2.2.15.3.2 CK and ADDR/CTRL Routing, One DDR3 Device
        16. 8.2.2.16 Data Topologies and Routing Definition
          1. 8.2.2.16.1 DQS and DQ/DM Topologies, Any Number of Allowed DDR3 Devices
          2. 8.2.2.16.2 DQS and DQ/DM Routing, Any Number of Allowed DDR3 Devices
        17. 8.2.2.17 Routing Specification
          1. 8.2.2.17.1 CK and ADDR_CTRL Routing Specification
          2. 8.2.2.17.2 DQS and DQ Routing Specification
    3. 8.3 High Speed Differential Signal Routing Guidance
    4. 8.4 Power Distribution Network Implementation Guidance
    5. 8.5 Single-Ended Interfaces
      1. 8.5.1 General Routing Guidelines
      2. 8.5.2 QSPI Board Design and Layout Guidelines
    6. 8.6 Clock Routing Guidelines
      1. 8.6.1 32-kHz Oscillator Routing
      2. 8.6.2 Oscillator Ground Connection
  9. Device and Documentation Support
    1. 9.1 Device Nomenclature
      1. 9.1.1 Standard Package Symbolization
      2. 9.1.2 Device Naming Convention
    2. 9.2 Tools and Software
    3. 9.3 Documentation Support
    4. 9.4 Receiving Notification of Documentation Updates
    5. 9.5 Community Resources
    6. 9.6 Trademarks
    7. 9.7 Electrostatic Discharge Caution
    8. 9.8 Glossary
  10. 10Mechanical Packaging and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • ZBO|760
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

NOTE

For more information, see Power, Reset, and Clock Management / PRCM Subsystem Environment / External Voltage Inputs or Initialization / Preinitialization / Power Requirements section of the Device TRM.

NOTE

The index numbers 1 which is part of the EMIF1 signal prefixes (ddr1_*) listed in Table 4-8, EMIF Signal Descriptions, column "SIGNAL NAME" not to be confused with DDR1 type of SDRAM memories.

NOTE

Audio Back End (ABE) module is not supported for this family of devices, but “ABE” name is still present in some clock or DPLL names.

CAUTION

All IO Cells are NOT Fail-safe compliant and should not be externally driven in absence of their IO supply.

Absolute Maximum Ratings

Stresses beyond those listed as Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Section 5.4, Recommended Operating Conditions, is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

Table 5-1 Absolute Maximum Rating Over Junction Temperature Range

PARAMETER(1) MIN MAX UNIT
VSUPPLY (steady-state) Supply voltage ranges (steady-state) Core (vdd, vdd_mpu, vdd_gpu, vdd_dsp, vdd_iva, vdd_rtc) –0.3 1.5 V
Analog (vdda_usb1, vdda_usb2, vdda_per, vdda_ddr, vdda_debug, vdda_mpu_abe, vdda_usb3, vdda_csi, vdda_core_gmac, vdda_pll_spare, vdda_dsp_iva, vdda_gpu, dda_hdmi, vdda_pcie, vdda_pcie0, vdda_sata, vdda_video, vdda_osc, vdda_rtc) –0.3 2.0 V
Analog 3.3-V (vdda33v_usb1, vdda33v_usb2) –0.3 3.8 V
vdds18v, vdds18v_ddr1, vdds_mlbp, vdds_ddr1 –0.3 2.1 V
vddshv1-11 (1.8-V mode) –0.3 2.1 V
vddshv1-7 (3.3-V mode), vddshv9-11 (3.3-V mode) –0.3 3.8 V
vddshv8 (3.3-V mode) –0.3 3.6 V
VIO (steady-state) Input and output voltage ranges (steady-state) Core I/Os –0.3 1.5 V
Analog I/Os (except HDMI) –0.3 2.0 V
HDMI I/Os –0.3 3.5 V
I/O 1.35 V –0.3 1.65 V
I/O 1.5 V –0.3 1.8 V
1.8-V I/Os –0.3 2.1 V
3.3-V I/Os (except those powered by vddshv8) –0.3 3.8 V
3.3-V I/Os (powered by vddshv8) –0.3 3.6 V
SR Maximum slew rate, all supplies 105 V/s
VIO (transient overshoot and undershoot) Input and output voltage ranges (transient overshoot/undershoot)
Note: valid for up to 20% of the signal period
0.2 * VDD (2) V
TSTG Storage temperature range after soldered onto PC board –55 150 °C
Latch-up I-test I-test(3), All I/Os (if different levels then one line per level) –100 100 mA
Latch-up OV-test Over-voltage test(4), All supplies (if different levels then one line per level) N/A 1.5 * Vsupply max V
  1. See I/Os supplied by this power pin in Table 4-2 Ball Characteristics.
  2. VDD is the voltage on the corresponding power-supply pin(s) for the IO.
  3. Per JEDEC JESD78 at 125°C with specified I/O pin injection current and clamp voltage of 1.5 times maximum recommended I/O voltage and negative 0.5 times maximum recommended I/O voltage.
  4. Per JEDEC JESD78 at 125°C.

ESD Ratings

Table 5-2 ESD Ratings

VALUE UNIT
VESD Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±250
  1. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
  2. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Power On Hours (POH) Limits

The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products.

NOTE

POH is a function of voltage, temperature and time. Usage at higher voltages and temperatures will result in a reduction in POH.

Table 5-3 Power On Hour (POH) Limits(1)

OPERATING CONDITION
OPP HDMI JUNCTION TEMP (Tj) LIFETIME (POH) JUNCTION TEMP (Tj) LIFETIME (POH) JUNCTION TEMP (Tj) LIFETIME (POH)
OPP_NOM or OPP_OD Not used 90°C 100k 100°C 100k 105°C 100k (3)
Used(2) 90°C 100k 100°C 63k 105°C 45k
OPP_HIGH Not used 90°C 65k 100°C 55k 105°C 50k
Used(2) 90°C 65k 100°C 55k 105°C 45k
  1. Unless specified in Table 5-3, all voltage domains and operating conditions are supported in the device at the noted temperatures.
  2. Power-on hours (POH) assume HDMI is used at the maximum supported bit rate continuously and/or operating the device continuously at the VD_MPU operating point (OPP) noted.
  3. 90k POH only if SuperSpeed USB 3.0 Dual-Role-Device (at 5 Gbps) or PCIe in Gen-II mode (at 5 Gbps) are used.
AM5718-HIREL D001_SPRS999.gif Figure 5-1 Operating Life Derating Chart
  1. See data sheet for absolute maximum and minimum recommended operating conditions.
  2. The predicted operating lifetime vs junction temperature is based on reliability modeling using electromigration as the dominant failure mechanism affecting device wear-out for the specific device process and design characteristics.
  3. Above derating lifetime is based on nominal OPP.

Recommended Operating Conditions

The device is used under the recommended operating conditions described in Table 5-4.

NOTE

Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions.

Table 5-4 Recommended Operating Conditions

PARAMETER DESCRIPTION MIN (2) NOM MAX DC (3) MAX (2) UNIT
INPUT POWER SUPPLY VOLTAGE RANGE
vdd Core voltage domain supply See Section 5.5 V
vdd_mpu Supply voltage range for MPU domain See Section 5.5 V
vdd_gpu GPU voltage domain supply See Section 5.5 V
vdd_dsp DSP voltage domain supply See Section 5.5 V
vdd_iva IVA voltage domain supply See Section 5.5 V
vdd_rtc RTC voltage domain supply See Section 5.5 V
vdda_usb1 DPLL_USB and HS USB1 1.8-V analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_usb2 HS USB2 1.8-V analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda33v_usb1 HS USB1 3.3-V analog power supply.If USB1 is not used, this pin can alternatively be connected to VSS if the following requirements are met:
- The usb1_dm/usb1_dp pins are left unconnected
- The USB1 PHY is kept powered down
3.135 3.3 3.366 3.465 V
Maximum noise (peak-peak) 50 mVPPmax
vdda33v_usb2 HS USB2 3.3-V analog power supply. If USB2 is not used, this pin can alternatively be connected to VSS if the following requirements are met:
- The usb2_dm/usb2_dp pins are left unconnected
- The USB2 PHY is kept powered down
3.135 3.3 3.366 3.465 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_per PER PLL and PER HSDIVIDER analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_ddr DPLL_DDR and DDR HSDIVIDER analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_debug DPLL_DEBUG analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_dsp_iva DPLL_DSP and DPLL_IVA analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_core_gmac DPLL_CORE and CORE HSDIVIDER analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_pll_spare DPLL_SPARE analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_gpu DPLL_GPU analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_hdmi PLL_HDMI and HDMI analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_pcie DPLL_PCIe_REF and PCIe analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_pcie0 PCIe ch0 RX/TX analog power supply 1.71 1.80 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_sata DPLL_SATA and SATA RX/TX analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_usb3 DPLL_USB_OTG_SS and USB3.0 RX/TX analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_video DPLL_VIDEO1 analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdds_mlbp MLBP IO power supply 1.71 1.80 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_mpu_abe DPLL_MPU analog power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_osc HFOSC analog power supply 1.71 1.80 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_rtc RTC bias and RTC LFOSC analog power supply 1.71 1.80 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdda_csi CSI Interface 1.8-V supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdds18v 1.8-V power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdds18v_ddr1 EMIF1 bias power supply 1.71 1.80 1.836 1.89 V
Maximum noise (peak-peak) 50 mVPPmax
vdds_ddr1 EMIF1 power supply (1.5 V for DDR3 mode / 1.35 V for DDR3L mode) 1.35-V Mode 1.28 1.35 1.377 1.42 V
1.5-V Mode 1.43 1.50 1.53 1.57
Maximum noise (peak-peak) 1.35-V Mode 50 mVPPmax
1.5-V Mode
vddshv5 Dual Voltage (1.8 V or 3.3 V) power supply for the RTC Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vddshv1 Dual Voltage (1.8 V or 3.3 V) power supply for the VIN2 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vddshv10 Dual Voltage (1.8 V or 3.3 V) power supply for the GPMC Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vddshv11 Dual Voltage (1.8 V or 3.3 V) power supply for the MMC2 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vddshv2 Dual Voltage (1.8 V or 3.3 V) power supply for the VOUT Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vddshv3 Dual Voltage (1.8 V or 3.3 V) power supply for the GENERAL Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vddshv4 Dual Voltage (1.8 V or 3.3 V) power supply for the MMC4 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vddshv6 Dual Voltage (1.8 V or 3.3 V) power supply for the VIN1 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vddshv7 Dual Voltage (1.8 V or 3.3 V) power supply for the WIFI Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vddshv8 Dual Voltage (1.8 V or 3.3 V) power supply for the MMC1 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vddshv9 Dual Voltage (1.8 V or 3.3 V) power supply for the RGMII Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 V
3.3-V Mode 3.135 3.30 3.366 3.465
Maximum noise (peak-peak) 1.8-V Mode 50 mVPPmax
3.3-V Mode
vss Ground supply 0 V
vssa_hdmi DPLL_HDMI and HDMI PHY analog ground 0 V
vssa_pcie PCIe analog ground 0 V
vssa_usb HS USB1 and HS USB2 analog ground 0 V
vssa_usb3 DPLL_USB and USB3.0 RX/TX analog ground 0 V
vssa_csi CSI Interface 0v Supply 0 V
vssa_sata SATA TX ground 0 V
vssa_video DPLL_VIDEO1 analog ground 0 V
vssa_osc0 OSC0 analog ground 0 V
vssa_osc1 OSC1 analog ground 0 V
TJ(1) Operating junction temperature range Extended –55 125 °C
ddr1_vref0 Reference Power Supply EMIF1 0.5 * vdds_ddr1 V
  1. Refer to Power On Hours table for limitations.
  2. The voltage at the device ball should never be below the MIN voltage or above the MAX voltage for any amount of time. This requirement includes dynamic voltage events such as AC ripple, voltage transients, voltage dips, etc.
  3. The DC voltage at the device ball should never be above the MAX DC voltage to avoid impact on device reliability and lifetime POH (Power-On-Hours). The MAX DC voltage is defined as the highest allowed DC regulated voltage, without transients, seen at the ball.

Operating Performance Points

This section describes the operating conditions of the device. This section also contains the description of each OPP (operating performance point) for processor clocks and device core clocks.

CAUTION

The OPP voltage and frequency values may change following the silicon characterization result.

Table 5-5 describes the maximum supported frequency per speed grade for AM5718 devices.

Table 5-5 Speed Grade Maximum Frequency

DEVICE
SPEED
MAXIMUM FREQUENCY (MHz)
MPU DSP IVA GPU IPU L3 DDR3/DDR3L
AM5718xxX 1500 750 532 532 212.8 266 667 (DDR3-1333)
  1. N/A in this table stands for Not Applicable.
  2. Device will boot up initially at 588 MHz. An intermediate boot program must immediately reprogram the PLL to a frequency not over 500 MHz.

AVS and ABB Requirements

Adaptive Voltage Scaling (AVS) and Adaptive Body Biasing (ABB) are required on most of the vdd_* supplies as defined in Table 5-6.

Table 5-6 AVS and ABB Requirements per vdd_* Supply

SUPPLY AVS REQUIRED? ABB REQUIRED?
vdd_core Yes, for all OPPs No
vdd_mpu Yes, for all OPPs Yes, for all OPPs
vdd_iva Yes, for all OPPs Yes, for all OPPs
vdd_dsp Yes, for all OPPs Yes, for all OPPs
vdd_gpu Yes, for all OPPs Yes, for all OPPs
vdd_rtc No No

Voltage And Core Clock Specifications

Table 5-7 shows the recommended OPP per voltage domain.

Table 5-7 Voltage Domains Operating Performance Points(1)

DOMAIN CONDITION OPP_NOM OPP_OD OPP_HIGH
MIN (3) NOM (2) MAX (3) MIN (3) NOM (2) MAX (3) MIN (3) NOM (2) MAX DC (4) MAX (3)
VD_CORE (V) BOOT (Before AVS is enabled) (5) 1.11 1.15 1.2 Not Applicable Not Applicable
After AVS is enabled (5) AVS Voltage (6) – 3.5% AVS Voltage (6) 1.16 Not Applicable Not Applicable
VD_MPU (V) BOOT (Before AVS is enabled) (5) 1.11 1.15 1.2 Not Applicable Not Applicable
After AVS is enabled (5) AVS Voltage (6) – 3.5% AVS Voltage (6) 1.16 AVS Voltage (6) – 3.5% AVS Voltage (6) AVS Voltage (6) + 5% AVS Voltage (6) – 3.5% AVS Voltage (6) AVS Voltage (6) +2% AVS Voltage (6) + 5%
VD_RTC (7) (V) - 0.84 0.88 to 1.06 1.16 Not Applicable Not Applicable
Others (V) BOOT (Before AVS is enabled) (5) 1.02 1.06 1.16 Not Applicable Not Applicable
After AVS is enabled (5) AVS Voltage (6) – 3.5% AVS Voltage (6) 1.16 AVS Voltage (6) – 3.5% AVS Voltage (6) AVS Voltage (6) + 5% AVS Voltage (6) – 3.5% AVS Voltage (6) AVS Voltage (6) +2% AVS Voltage (6) + 5%
  1. The voltage ranges in this table are preliminary, and final voltage ranges may be different than shown. Systems should be designed with the ability to modify the voltage to comply with future recommendations.
  2. In a typical implementation, the power supply should target the NOM voltage.
  3. The voltage at the device ball should never be below the MIN voltage or above the MAX voltage for any amount of time. This requirement includes dynamic voltage events such as AC ripple, voltage transients, voltage dips, etc.
  4. The DC voltage at the device ball should never be above the MAX DC voltage to avoid impact on device reliability and lifetime POH (Power-On-Hours). The MAX DC voltage is defined as the highest allowed DC regulated voltage, without transients, seen at the ball.
  5. For all OPPs, AVS must be enabled to avoid impact on device reliability, lifetime POH (Power-On-Hours), and device power.
  6. The AVS voltages are device-dependent, voltage domain-dependent, and OPP-dependent. They must be read from the STD_FUSE_OPP Registers. For information about STD_FUSE_OPP Registers address, please refer to Control Module Section of the TRM. The power supply should be adjustable over the following ranges for each required OPP:
    • OPP_NOM for MPU: 0.85 V – 1.15 V
    • OPP_NOM for CORE and Others: 0.85 V – 1.15 V
    • OPP_OD: 0.94 V – 1.15 V
    • OPP_HIGH: 1.05 V – 1.25 V
    The AVS voltages will be within the above specified ranges.
  7. VD_RTC can optionally be tied to VD_CORE and operate at the VD_CORE AVS voltages.
  8. The power supply must be programmed with the AVS voltages for the MPU and the CORE voltage domain, either just after the ROM boot or at the earliest possible time in the secondary boot loader before there is significant activity seen on these domains.

Table 5-8 describes the standard processor clocks speed characteristics vs OPP of the device.

Table 5-8 Supported OPP vs Max Frequency(2)

DESCRIPTION OPP_NOM OPP_OD OPP_HIGH
Max Freq. (MHz) Max Freq. (MHz) Max Freq. (MHz)
VD_MPU
MPU_CLK 1000 1176 1500
VD_DSP
DSP_CLK 600 700 750
VD_IVA
IVA_GCLK 388.3 430 532
VD_GPU
GPU_CLK 425.6 500 532
VD_CORE
CORE_IPUx_CLK 212.8 N/A N/A
L3_CLK 266 N/A N/A
DDR3 / DDR3L 667 (DDR3-1333) N/A N/A
VD_RTC
RTC_FCLK 0.034 N/A N/A
  1. N/A in this table stands for Not Applicable.
  2. Maximum supported frequency is limited according to the Device Speed Grade (see Table 5-5).

Maximum Supported Frequency

Device modules either receive their clock directly from an external clock input, directly from a PLL, or from a PRCM. Table 5-9 lists the clock source options for each module on this device, along with the maximum frequency that module can accept. To ensure proper module functionality, the device PLLs and dividers must be programmed not to exceed the maximum frequencies listed in this table.

Table 5-9 Maximum Supported Frequency

MODULE CLOCK SOURCES
Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name
AES1 AES1_L3_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE
AES2 AES2_L3_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE
BB2D BB2D_FCLK Func 354.6 BB2D_GFCLK BB2D_GFCLK DPLL_CORE
BB2D_ICLK Int 266 DSS_L3_GICLK CORE_X2_CLK DPLL_CORE
COUNTER_32K COUNTER_32K_FCLK Func 0.032 FUNC_32K_CLK SYS_CLK1/610 OSC1
COUNTER_32K_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
CTRL_MODULE_BANDGAP L3INSTR_TS_GCLK Int 4.8 L3INSTR_TS_GCLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
CTRL_MODULE_CORE L4CFG_L4_GICLK Int 133 L4CFG_L4_GICLK CORE_X2_CLK DPLL_CORE
CTRL_MODULE_WKUP WKUPAON_GICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
DCAN1 DCAN1_FCLK Func 38.4 DCAN1_SYS_CLK SYS_CLK1 OSC1
SYS_CLK2 OSC2
DCAN1_ICLK Int 266 WKUPAON_GICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
DCAN2 DCAN2_FCLK Func 38.4 DCAN2_SYS_CLK SYS_CLK1 OSC1
DCAN2_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
DES3DES DES_CLK_L3 Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE
DLL EMIF_DLL_FCLK Func EMIF_DLL_FCLK EMIF_DLL_GCLK EMIF_DLL_GCLK DPLL_DDR
DLL_AGING FCLK Int 38.4 L3INSTR_DLL_AGING_GCLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
DMM DMM_CLK Int 266 EMIF_L3_GICLK CORE_X2_CLK DPLL_CORE
DPLL_DEBUG SYSCLK Int 38.4 EMU_SYS_CLK SYS_CLK1 OSC1
DSP1 DSP1_FICLK Int & Func DSP_CLK DSP1_GFCLK DSP_GFCLK DPLL_DSP
DSS DSS_HDMI_CEC_CLK Func 0.032 HDMI_CEC_GFCLK SYS_CLK1/610 OSC1
DSS_HDMI_PHY_CLK Func 48 HDMI_PHY_GFCLK FUNC_192M_CLK DPLL_PER
DSS_CLK Func 192 DSS_GFCLK DSS_CLK DPLL_PER
HDMI_CLKINP Func 38.4 HDMI_DPLL_CLK SYS_CLK1 OSC1
SYS_CLK2 OSC2
DSS_L3_ICLK Int 266 DSS_L3_GICLK CORE_X2_CLK DPLL_CORE
VIDEO1_CLKINP Func 38.4 VIDEO1_DPLL_CLK SYS_CLK1 OSC1
SYS_CLK2 OSC2
VIDEO2_CLKINP Func 38.4 VIDEO2_DPLL_CLK SYS_CLK1 OSC1
SYS_CLK2 OSC2
DPLL_DSI1_A_CLK1 Func 209.3 N/A HDMI_CLK DPLL_HDMI
VIDEO1_CLKOUT1 DPLL_VIDEO1
DPLL_DSI1_B_CLK1 Func 209.3 N/A VIDEO1_CLKOUT3 DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
DPLL_ABE_X2_CLK DPLL_ABE
DPLL_DSI1_C_CLK1 Func 209.3 N/A HDMI_CLK DPLL_HDMI
VIDEO1_CLKOUT3 DPLL_VIDEO1
DPLL_HDMI_CLK1 Func 185.6 N/A HDMI_CLK DPLL_HDMI
DSS DISPC LCD1_CLK Func 209.3 N/A DPLL_DSI1_A_CLK1 See DSS data in the rows above
DSS_CLK
LCD2_CLK Func 209.3 N/A DPLL_DSI1_B_CLK1
DSS_CLK
LCD3_CLK Func 209.3 N/A DPLL_DSI1_C_CLK1
DSS_CLK
F_CLK Func 209.3 N/A DPLL_DSI1_A_CLK1
DPLL_DSI1_B_CLK1
DPLL_DSI1_C_CLK1
DSS_CLK
DPLL_HDMI_CLK1
EFUSE_CTRL_CUST ocp_clk Int 133 CUSTEFUSE_L4_GICLK CORE_X2_CLK DPLL_CORE
sys_clk Func 38.4 CUSTEFUSE_SYS_GFCLK SYS_CLK1 OSC1
ELM ELM_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
EMIF_OCP_FW L3_CLK Int 266 EMIF_L3_GICLK CORE_X2_CLK DPLL_CORE
EMIF_PHY1 EMIF_PHY1_FCLK Func DDR EMIF_PHY_GCLK EMIF_PHY_GCLK DPLL_DDR
EMIF1 EMIF1_ICLK Int 266 EMIF_L3_GICLK CORE_X2_CLK DPLL_CORE
GMAC_SW CPTS_RFT_CLK Func 266 GMAC_RFT_CLK PER_ABE_X1_GFCLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
CORE_X2_CLK DPLL_CORE
MAIN_CLK Int 125 GMAC_MAIN_CLK GMAC_250M_CLK DPLL_GMAC
MHZ_250_CLK Func 250 GMII_250MHZ_CLK GMII_250MHZ_CLK DPLL_GMAC
MHZ_5_CLK Func 5 RGMII_5MHZ_CLK GMAC_RMII_HS_CLK DPLL_GMAC
MHZ_50_CLK Func 50 RMII_50MHZ_CLK GMAC_RMII_HS_CLK DPLL_GMAC
RMII1_MHZ_50_CLK Func 50 RMII_50MHZ_CLK GMAC_RMII_HS_CLK DPLL_GMAC
RMII2_MHZ_50_CLK Func 50 RMII_50MHZ_CLK GMAC_RMII_HS_CLK DPLL_GMAC
GPIO1 GPIO1_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
GPIO1_DBCLK Func 0.032 WKUPAON_SYS_GFCLK WKUPAON_32K_GFCLK OSC1
RTC Oscillator
GPIO2 GPIO2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
GPIO2_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC1
RTC Oscillator
GPIO3 GPIO3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
GPIO3_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC1
RTC Oscillator
GPIO4 GPIO4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
GPIO4_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC1
PIDBCLK Func 0.032 GPIO_GFCLK RTC Oscillator
GPIO5 GPIO5_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
GPIO5_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC1
PIDBCLK Func 0.032 GPIO_GFCLK RTC Oscillator
GPIO6 GPIO6_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
GPIO6_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC1
PIDBCLK Func 0.032 GPIO_GFCLK RTC Oscillator
GPIO7 GPIO7_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
GPIO7_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC1
PIDBCLK Func 0.032 GPIO_GFCLK RTC Oscillator
GPIO8 GPIO8_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
GPIO8_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC1
PIDBCLK Func 0.032 GPIO_GFCLK RTC Oscillator
GPMC GPMC_FCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
GPU GPU_FCLK1 Func GPU_CLK GPU_CORE_GCLK CORE_GPU_CLK DPLL_CORE
PER_GPU_CLK DPLL_PER
GPU_GCLK DPLL_GPU
GPU_FCLK2 Func GPU_CLK GPU_HYD_GCLK CORE_GPU_CLK DPLL_CORE
PER_GPU_CLK DPLL_PER
GPU_GCLK DPLL_GPU
GPU_ICLK Int 266 GPU_L3_GICLK CORE_X2_CLK DPLL_CORE
HDMI PHY DSS_HDMI_PHY_CLK Func 38.4 HDMI_PHY_GFCLK FUNC_192M_CLK DPLL_PER
HDQ1W HDQ1W_ICLK Int & Func 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
HDQ1W_FCLK Func 12 PER_12M_GFCLK FUNC_192M_CLK DPLL_PER
I2C1 I2C1_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
I2C1_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER
I2C2 I2C2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
I2C2_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER
I2C3 I2C3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
I2C3_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER
I2C4 I2C4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
I2C4_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER
I2C5 I2C5_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE
I2C5_FCLK Func 96 IPU_96M_GFCLK FUNC_192M_CLK DPLL_PER
IEEE1500_2_OCP PI_L3CLK Int & Func 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE
IPU1 IPU1_GFCLK Int & Func 425.6 IPU1_GFCLK DPLL_ABE_X2_CLK DPLL_ABE
CORE_IPU_ISS_BOOST_CLK DPLL_CORE
IPU2 IPU2_GFCLK Int & Func 425.6 IPU2_GFCLK CORE_IPU_ISS_BOOST_CLK DPLL_CORE
IVA IVA_GCLK Int IVA_GCLK IVA_GCLK IVA_GFCLK DPLL_IVA
KBD KBD_FCLK Func 0.032 WKUPAON_SYS_GFCLK WKUPAON_32K_GFCLK OSC1
PICLKKBD Func 0.032 WKUPAON_SYS_GFCLK RTC Oscillator
KBD_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1
PICLKOCP Int 38.4 WKUPAON_GICLK DPLL_ABE_X2_CLK DPLL_ABE
L3_INSTR L3_CLK Int L3_CLK L3INSTR_L3_GICLK CORE_X2_CLK DPLL_CORE
L3_MAIN L3_CLK1 Int L3_CLK L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
L3_CLK2 Int L3_CLK L3INSTR_L3_GICLK CORE_X2_CLK DPLL_CORE
L4_CFG L4_CFG_CLK Int 133 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
L4_PER1 L4_PER1_CLK Int 133 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
L4_PER2 L4_PER2_CLK Int 133 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
L4_PER3 L4_PER3_CLK Int 133 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE
L4_WKUP L4_WKUP_CLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
MAILBOX1 MAILBOX1_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX2 MAILBOX2_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX3 MAILBOX3_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX4 MAILBOX4_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX5 MAILBOX5_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX6 MAILBOX6_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX7 MAILBOX7_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX8 MAILBOX8_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX9 MAILBOX9_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX10 MAILBOX10_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX11 MAILBOX11_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX12 MAILBOX12_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
MAILBOX13 MAILBOX13_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
McASP1 MCASP1_AHCLKR Func 100 MCASP1_AHCLKR DPLL_ABE_X2_CLK DPLL_ABE
SYS_CLK1 OSC1
FUNC_96M_AON_CLK DPLL_PER
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
MCASP1_AHCLKX Func 100 MCASP1_AHCLKX DPLL_ABE_X2_CLK DPLL_ABE
SYS_CLK1 OSC1
FUNC_96M_AON_CLK DPLL_PER
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
MCASP1_FCLK Func 192 MCASP1_AUX_GFCLK PER_ABE_X1_GFCLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
MCASP1_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE
McASP2 MCASP2_AHCLKR Func 100 MCASP2_AHCLKR DPLL_ABE_X2_CLK DPLL_ABE
SYS_CLK1 OSC1
FUNC_96M_AON_CLK DPLL_PER
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
MCASP2_AHCLKX Func 100 MCASP2_AHCLKX DPLL_ABE_X2_CLK DPLL_ABE
SYS_CLK1 OSC1
FUNC_96M_AON_CLK DPLL_PER
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
MCASP2_FCLK Func 192 MCASP2_AUX_GFCLK PER_ABE_X1_GFCLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
MCASP2_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
McASP3 MCASP3_AHCLKX Func 100 MCASP3_AHCLKX DPLL_ABE_X2_CLK DPLL_ABE
SYS_CLK1 OSC1
FUNC_96M_AON_CLK DPLL_PER
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
MCASP3_FCLK Func 192 MCASP3_AUX_GFCLK PER_ABE_X1_GFCLK DPLL_ABE
VIDEO1_CLK DPLL_ABE
HDMI_CLK DPLL_HDMI
MCASP3_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
McASP4 MCASP4_AHCLKX Func 100 MCASP4_AHCLKX DPLL_ABE_X2_CLK DPLL_ABE
SYS_CLK1 OSC1
FUNC_96M_AON_CLK DPLL_PER
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
MCASP4_FCLK Func 192 MCASP4_AUX_GFCLK PER_ABE_X1_GFCLK DPLL_ABE
VIDEO1_CLK DPLL_ABE
HDMI_CLK DPLL_HDMI
MCASP4_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
McASP5 MCASP5_AHCLKX Func 100 MCASP5_AHCLKX DPLL_ABE_X2_CLK DPLL_ABE
SYS_CLK1 OSC1
FUNC_96M_AON_CLK DPLL_PER
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
MCASP5_FCLK Func 192 MCASP5_AUX_GFCLK PER_ABE_X1_GFCLK DPLL_ABE
VIDEO1_CLK DPLL_ABE
HDMI_CLK DPLL_HDMI
MCASP5_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
McASP6 MCASP6_AHCLKX Func 100 MCASP6_AHCLKX DPLL_ABE_X2_CLK DPLL_ABE
FUNC_96M_AON_CLK DPLL_PER
SYS_CLK1 OSC1
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
MCASP6_FCLK Func 192 MCASP6_AUX_GFCLK PER_ABE_X1_GFCLK DPLL_ABE
VIDEO1_CLK DPLL_ABE
HDMI_CLK DPLL_HDMI
MCASP6_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
McASP7 MCASP7_AHCLKX Func 100 MCASP7_AHCLKX DPLL_ABE_X2_CLK DPLL_ABE
SYS_CLK1 OSC1
FUNC_96M_AON_CLK DPLL_PER
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
MCASP7_FCLK Func 192 MCASP7_AUX_GFCLK PER_ABE_X1_GFCLK DPLL_ABE
VIDEO1_CLK DPLL_ABE
HDMI_CLK DPLL_HDMI
MCASP7_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
McASP8 MCASP8_AHCLKX Func 100 MCASP8_AHCLKX DPLL_ABE_X2_CLK DPLL_ABE
SYS_CLK1 OSC1
FUNC_96M_AON_CLK DPLL_PER
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
MCASP8_FCLK Func 192 MCASP8_AUX_GFCLK PER_ABE_X1_GFCLK DPLL_ABE
VIDEO1_CLK DPLL_ABE
HDMI_CLK DPLL_HDMI
MCASP8_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
McSPI1 SPI1_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
SPI1_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER
McSPI2 SPI2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
SPI2_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER
McSPI3 SPI3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
SPI3_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER
McSPI4 SPI4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
SPI4_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER
CSI2_0 CTRLCLK Int & Func 96 LVDSRX_96M_GFCLK FUNC_192M_CLK DPLL_PER
CAL_FCLK Int & Func 266 CAL_GICLK CORE_ISS_MAIN_CLK DPLL_CORE
L3_ICLK CM_CORE_AON
CSI2_1 CTRLCLK Int & Func 96 LVDSRX_96M_GFCLK FUNC_192M_CLK DPLL_PER
CAL_FCLK Int & Func 266 CAL_GICLK CORE_ISS_MAIN_CLK DPLL_CORE
L3_ICLK CM_CORE_AON
MMC1 MMC1_CLK_32K Func 0.032 L3INIT_32K_GFCLK FUNC_32K_CLK OSC1
MMC1_FCLK Func 192 MMC1_GFCLK FUNC_192M_CLK DPLL_PER
128 FUNC_256M_CLK DPLL_PER
MMC1_ICLK1 Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE
MMC1_ICLK2 Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE
MMC2 MMC2_CLK_32K Func 0.032 L3INIT_32K_GFCLK FUNC_32K_CLK OSC1
MMC2_FCLK Func 192 MMC2_GFCLK FUNC_192M_CLK DPLL_PER
128 FUNC_256M_CLK DPLL_PER
MMC2_ICLK1 Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE
MMC2_ICLK2 Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE
MMC3 MMC3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
MMC3_CLK_32K Func 0.032 L4PER_32K_GFCLK FUNC_32K_CLK OSC1
MMC3_FCLK Func 48 MMC3_GFCLK FUNC_192M_CLK DPLL_PER
192
MMC4 MMC4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
MMC4_CLK_32K Func 0.032 L4PER_32K_GFCLK FUNC_32K_CLK OSC1
MMC4_FCLK Func 48 MMC4_GFCLK FUNC_192M_CLK DPLL_PER
192
MMU_EDMA MMU1_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
MMU_PCIESS MMU2_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
MPU MPU_CLK Int & Func MPU_CLK MPU_GCLK MPU_GCLK DPLL_MPU
MPU_EMU_DBG FCLK Int 38.4 EMU_SYS_CLK SYS_CLK1 OSC1
MPU_GCLK DPLL_MPU
OCMC_RAM1 OCMC1_L3_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
OCMC_ROM OCMC_L3_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
OCP_WP_NOC PICLKOCPL3 Int 266 L3INSTR_L3_GICLK CORE_X2_CLK DPLL_CORE
OCP2SCP1 L4CFG1_ADAPTER_CLKIN Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE
OCP2SCP2 L4CFG2_ADAPTER_CLKIN Int 133 L4CFG_L4_GICLK CORE_X2_CLK DPLL_CORE
OCP2SCP3 L4CFG3_ADAPTER_CLKIN Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE
PCIe_SS1 PCIE1_PHY_WKUP_CLK Func 0.032 PCIE_32K_GFCLK FUNC_32K_CLK RTC Oscillator
PCIe_SS1_FICLK Int 266 PCIE_L3_GICLK CORE_X2_CLK DPLL_CORE
PCIEPHY_CLK Func 2500 PCIE_PHY_GCLK PCIE_PHY_GCLK APLL_PCIE
PCIEPHY_CLK_DIV Func 1250 PCIE_PHY_DIV_GCLK PCIE_PHY_DIV_GCLK APLL_PCIE
PCIE1_REF_CLKIN Func 34.3 PCIE_REF_GFCLK CORE_USB_OTG_SS_LFPS_TX_CLK DPLL_CORE
PCIE1_PWR_CLK Func 38.4 PCIE_SYS_GFCLK SYS_CLK1 OSC1
PCIe_SS2 PCIE2_PHY_WKUP_CLK Func 0.032 PCIE_32K_GFCLK FUNC_32K_CLK RTC Oscillator
PCIe_SS2_FICLK Func 266 PCIE_L3_GICLK CORE_X2_CLK DPLL_CORE
PCIEPHY_CLK Func 2500 PCIE_PHY_GCLK PCIE_PHY_GCLK APLL_PCIE
PCIEPHY_CLK_DIV Func 1250 PCIE_PHY_DIV_GCLK PCIE_PHY_DIV_GCLK APLL_PCIE
PCIE2_REF_CLKIN Func 34.3 PCIE_REF_GFCLK CORE_USB_OTG_SS_LFPS_TX_CLK DPLL_CORE
PCIE2_PWR_CLK Func 38.4 PCIE_SYS_GFCLK SYS_CLK1 OSC1
PRCM_MPU 32K_CLK Func 0.032 FUNC_32K_CLK SYS_CLK1/610 OSC1
SYS_CLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
PWMSS1 PWMSS1_GICLK Int & Func 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
PWMSS2 PWMSS2_GICLK Int & Func 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
PWMSS3 PWMSS3_GICLK Int & Func 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
QSPI QSPI_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
QSPI_FCLK Func 128 QSPI_GFCLK FUNC_256M_CLK DPLL_PER
PER_QSPI_CLK DPLL_PER
RNG RNG_ICLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE
RTC_SS RTC_ICLK Int 133 RTC_L4_GICLK CORE_X2_CLK DPLL_CORE
RTC_FCLK Func RTC_FCLK RTC_AUX_CLK SYS_32K RTC Oscillator
FUNC_32K_CLK SYS_CLK1/610 OSC1
SAR_ROM PRCM_ROM_CLOCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
SATA SATA_FICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE
SATA_PMALIVE_FCLK Func 48 L3INIT_48M_GFCLK FUNC_192M_CLK DPLL_PER
REF_CLK Func 38 SATA_REF_GFCLK SYS_CLK1 OSC1
SDMA SDMA_FCLK Int & Func 266 DMA_L3_GICLK CORE_X2_CLK DPLL_CORE
SHA2MD51 SHAM_1_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE
SHA2MD52 SHAM_2_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE
SL2 IVA_GCLK Int IVA_GCLK IVA_GCLK IVA_GFCLK DPLL_IVA
SMARTREFLEX_CORE MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK DPLL_CORE
SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
SMARTREFLEX_DSP MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK DPLL_CORE
SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
SMARTREFLEX_GPU MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK DPLL_CORE
SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
SMARTREFLEX_IVAHD MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK DPLL_CORE
SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
SMARTREFLEX_MPU MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK DPLL_CORE
SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
SPINLOCK SPINLOCK_ICLK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER1 TIMER1_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
TIMER1_FCLK Func 100 TIMER1_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TIMER2 TIMER2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER2_FCLK Func 100 TIMER2_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TIMER3 TIMER3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER3_FCLK Func 100 TIMER3_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TIMER4 TIMER4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER4_FCLK Func 100 TIMER4_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TIMER5 TIMER5_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER5_FCLK Func 100 TIMER5_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
CLKOUTMUX[0] CLKOUTMUX[0]
TIMER6 TIMER6_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER6_FCLK Func 100 TIMER6_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
CLKOUTMUX[0] CLKOUTMUX[0]
TIMER7 TIMER7_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER7_FCLK Func 100 TIMER7_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
CLKOUTMUX[0] CLKOUTMUX[0]
TIMER8 TIMER8_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER8_FCLK Func 100 TIMER8_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
CLKOUTMUX[0] CLKOUTMUX[0]
TIMER9 TIMER9_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER9_FCLK Func 100 TIMER9_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TIMER10 TIMER10_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER10_FCLK Func 100 TIMER10_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TIMER11 TIMER11_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER11_FCLK Func 100 TIMER11_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TIMER12 TIMER12_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
TIMER12_FCLK Func 0.032 OSC_32K_CLK RC_CLK RC oscillator
TIMER13 TIMER13_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER13_FCLK Func 100 TIMER13_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TIMER14 TIMER14_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER14_FCLK Func 100 TIMER14_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TIMER15 TIMER15_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER15_FCLK Func 100 TIMER15_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TIMER16 TIMER16_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE
TIMER16_FCLK Func 100 TIMER16_GFCLK SYS_CLK1 OSC1
FUNC_32K_CLK OSC1
RTC Oscillator
SYS_CLK2 OSC2
XREF_CLK0 XREF_CLK0
XREF_CLK1 XREF_CLK1
XREF_CLK2 XREF_CLK2
XREF_CLK3 XREF_CLK3
DPLL_ABE_X2_CLK DPLL_ABE
VIDEO1_CLK DPLL_VIDEO1
HDMI_CLK DPLL_HDMI
TPCC TPCC_GCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
TPTC1 TPTC0_GCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
TPTC2 TPTC1_GCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
UART1 UART1_FCLK Func 48 UART1_GFCLK FUNC_192M_CLK DPLL_PER
UART1_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
UART2 UART2_FCLK Func 48 UART2_GFCLK FUNC_192M_CLK DPLL_PER
UART2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
UART3 UART3_FCLK Func 48 UART3_GFCLK FUNC_192M_CLK DPLL_PER
UART3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
UART4 UART4_FCLK Func 48 UART4_GFCLK FUNC_192M_CLK DPLL_PER
UART4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
UART5 UART5_FCLK Func 48 UART5_GFCLK FUNC_192M_CLK DPLL_PER
UART5_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE
UART6 UART6_FCLK Func 48 UART6_GFCLK FUNC_192M_CLK DPLL_PER
UART6_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE
UART7 UART7_FCLK Func 48 UART7_GFCLK FUNC_192M_CLK DPLL_PER
UART7_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
UART8 UART8_FCLK Func 48 UART8_GFCLK FUNC_192M_CLK DPLL_PER
UART8_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
UART9 UART9_FCLK Func 48 UART9_GFCLK FUNC_192M_CLK DPLL_PER
UART9_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE
UART10 UART10_FCLK Func 48 UART10_GFCLK FUNC_192M_CLK DPLL_PER
UART10_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
USB1 USB1_MICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE
USB3PHY_REF_CLK Func 34.3 USB_LFPS_TX_GFCLK CORE_USB_OTG_SS_LFPS_TX_CLK DPLL_CORE
USB2PHY1_TREF_CLK Func 38.4 USB_OTG_SS_REF_CLK SYS_CLK1 OSC1
USB2PHY1_REF_CLK Func 960 L3INIT_960M_GFCLK L3INIT_960_GFCLK DPLL_USB
USB2 USB2_MICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE
USB2PHY2_TREF_CLK Func 38.4 USB_OTG_SS_REF_CLK SYS_CLK1 OSC1
USB2PHY2_REF_CLK Func 960 L3INIT_960M_GFCLK L3INIT_960_GFCLK DPLL_USB
USB_PHY1_CORE USB2PHY1_WKUP_CLK Func 0.032 COREAON_32K_GFCLK SYS_CLK1/610 OSC1
USB_PHY2_CORE USB2PHY2_WKUP_CLK Func 0.032 COREAON_32K_GFCLK SYS_CLK1/610 OSC1
USB_PHY3_CORE USB3PHY_WKUP_CLK Func 0.032 COREAON_32K_GFCLK SYS_CLK1/610 OSC1
VCP1 VCP1_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
VCP2 VCP2_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE
VIP1 L3_CLK_PROC_CLK Int & Func 266 VIP1_GCLK CORE_X2_CLK DPLL_CORE
CORE_ISS_MAIN_CLK DPLL_CORE
VPE L3_CLK_PROC_CLK Int & Func 300 VPE_GCLK CORE_ISS_MAIN_CLK DPLL_CORE
VIDEO1_CLKOUT4 DPLL_VIDEO1
WD_TIMER1 PIOCPCLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
PITIMERCLK Func 0.032 OSC_32K_CLK RC_CLK RC oscillator
WD_TIMER2 WD_TIMER2_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1
DPLL_ABE_X2_CLK DPLL_ABE
WD_TIMER2_FCLK Func 0.032 WKUPAON_SYS_GFCLK WKUPAON_32K_GFCLK RTC Oscillator

Power Consumption Summary

NOTE

Maximum power consumption for this SoC depends on the specific use conditions for the end system. Contact your TI representative for assistance in estimating maximum power consumption for the end system use case.

Electrical Characteristics

NOTE

The data specified in Section 5.7.1 through Section 5.7.14 are subject to change.

NOTE

The interfaces or signals described in Section 5.7.1 through Section 5.7.14 correspond to the interfaces or signals available in multiplexing mode 0 (Function 1).

All interfaces or signals multiplexed on the balls described in these tables have the same DC electrical characteristics, unless multiplexing involves a PHY/GPIO combination in which case different DC electrical characteristics are specified for the different multiplexing modes (Functions).

LVCMOS DDR DC Electrical Characteristics

Table 5-10 summarizes the DC electrical characteristics for LVCMOS DDR Buffers.

NOTE

For more information on the I/O cell configurations (i[2:0], sr[1:0]), see the Chapter Control Module of the Device TRM.

Table 5-10 LVCMOS DDR DC Electrical Characteristics

PARAMETER MIN NOM MAX UNIT
Signal Names in MUXMODE 0 (Single-Ended Signals): ddr1_d[31:0], ddr1_a[15:0], ddr1_dqm[3:0], ddr1_ba[2:0], ddr1_csn[1:0], ddr1_cke, ddr1_odt[1:0], ddr1_casn, ddr1_rasn, ddr1_wen, ddr1_rst, ddr1_ecc_d[7:0], ddr1_dqm_ecc;
Balls: AH23 / AB16 / AG22 / AE20 / AC17 / AC18 / AF20 /AH21 / AG21 / AF17 / AE18 / AB18 / AD20 / AC19 / AC20 / AB19 / AF21 / AH22 / AG23 / AE21 / AF22 / AE22 / AD21 / AD22 / AC21 / AF18 / AE17 / AD18 / AF25 / AF26 / AG26 / AH26 / AF24 / AE24 / AF23 / AE23 / AC23 / AF27 / AG27 / AF28 / AE26 / AC25 / AC24 / AD25 / V20 / W20 / AB28 / AC28 / AC27 / Y19 / AB27 / Y20 / AA23 / Y22 / Y23 / AA24 / Y24 / AA26 / AA25 / AA28 / W22 / V23 / W19 / W23 / Y25 / V24 / V25 / Y26 / AD23 / AB23 / AC26 / AA27 / V26;
Driver Mode
VOH High-level output threshold (IOH = 0.1 mA) 0.9*VDDS V
VOL Low-level output threshold (IOL = 0.1 mA) 0.1*VDDS V
CPAD Pad capacitance (including package capacitance) 3 pF
ZO Output impedance (drive strength) l[2:0] = 000 (Imp80) 80 Ω
l[2:0] = 001 (Imp60) 60
l[2:0] = 010 (Imp48) 48
l[2:0] = 011 (Imp40) 40
l[2:0] = 100 (Imp34) 34
Single-Ended Receiver Mode
VIH High-level input threshold DDR3/DDR3L VREF + 0.1 VDDS + 0.2 V
VIL Low-level input threshold DDR3/DDR3L –0.2 VREF – 0.1 V
VCM Input common-mode voltage VREF – 10%vdds VREF + 10%vdds V
CPAD Pad capacitance (including package capacitance) 3 pF
Signal Names in MUXMODE 0 (Differential Signals): ddr1_dqs[3:0], ddr1_dqsn[3:0], ddr1_ck, ddr1_nck, ddr1_dqs_ecc, ddr1_dqsn_ecc
Bottom Balls: AH25 / AG25 / AE27 / AE28 / AD27 / AD28 / Y28 / Y27 / V27 / V28 / AG24 / AH24
Driver Mode
VOH High-level output threshold (IOH = 0.1 mA) 0.9 × VDDS V
VOL Low-level output threshold (IOL = 0.1 mA) 0.1 × VDDS V
CPAD Pad capacitance (including package capacitance) 3 pF
ZO Output impedance (drive strength) l[2:0] = 000 (Imp80) 80 Ω
l[2:0] = 001 (Imp60) 60
l[2:0] = 010 (Imp48) 48
l[2:0] = 011 (Imp40) 40
l[2:0] = 100 (Imp34) 34
Single-Ended Receiver Mode
VIH High-level input threshold DDR3/DDR3L VREF + 0.1 VDDS + 0.2 V
VIL Low-level input threshold DDR3/DDR3L –0.2 VREF – 0.1 V
VCM Input common-mode voltage VREF – 10%vdds VREF + 10%vdds V
CPAD Pad capacitance (including package capacitance) 3 pF
Differential Receiver Mode
VSWING Input voltage swing DDR3/DDR3L 0.2 vdds + 0.4 V
VCM Input common-mode voltage VREF – 10%vdds VREF + 10%vdds V
CPAD Pad capacitance (including package capacitance) 3 pF
  1. VDDS in this table stands for corresponding power supply (i.e. vdds_ddr1). For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [10] column.
  2. VREF in this table stands for corresponding Reference Power Supply (i.e. ddr1_vref0). For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [10] column.

HDMIPHY DC Electrical Characteristics

The HDMIPHY DC Electrical Characteristics are compliant with the HDMI 1.4a specification and are not reproduced here.

Dual Voltage LVCMOS I2C DC Electrical Characteristics

Table 5-11 summarizes the DC electrical characteristics for Dual Voltage LVCMOS I2C Buffers.

NOTE

For more information on the I/O cell configurations, see the Control Module section of the Device TRM.

Table 5-11 Dual Voltage LVCMOS I2C DC Electrical Characteristics

PARAMETER MIN NOM MAX UNIT
Signal Names in MUXMODE 0: i2c2_scl; i2c1_scl; i2c1_sda; i2c2_sda;
Balls: F17 / C20 / C21 / C25
I2C Standard Mode – 1.8 V
VIH Input high-level threshold 0.7*VDDS V
VIL Input low-level threshold 0.3*VDDS V
Vhys Hysteresis 0.1*VDDS V
IIN Input current at each I/O pin with an input voltage between 0.1*VDDS to 0.9*VDDS 12 µA
IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 12 µA
CIN Input capacitance 10 pF
VOL3 Output low-level threshold open-drain at 3-mA sink current 0.2*VDDS V
IOLmin Low-level output current @VOL=0.2*VDDS 3 mA
tOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 5 pF to 400 pF 250 ns
I2C Fast Mode – 1.8 V
VIH Input high-level threshold 0.7*VDDS V
VIL Input low-level threshold 0.3*VDDS V
Vhys Hysteresis 0.1*VDDS V
IIN Input current at each I/O pin with an input voltage between 0.1*VDDS to 0.9*VDDS 12 µA
IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 12 µA
CIN Input capacitance 10 pF
VOL3 Output low-level threshold open-drain at 3-mA sink current 0.2*VDDS V
IOLmin Low-level output current @VOL=0.2*VDDS 3 mA
tOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 10 pF to 400 pF 20+0.1*Cb 250 ns
I2C Standard Mode – 3.3 V
VIH Input high-level threshold 0.7*VDDS V
VIL Input low-level threshold 0.3*VDDS V
Vhys Hysteresis 0.05*VDDS V
IIN Input current at each I/O pin with an input voltage between 0.1*VDDS to 0.9*VDDS 31 80 µA
IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 31 80 µA
CIN Input capacitance 10 pF
VOL3 Output low-level threshold open-drain at 3-mA sink current 0.4 V
IOLmin Low-level output current @VOL=0.4V 3 mA
IOLmin Low-level output current @VOL=0.6V for full drive load (400pF/400KHz) 6 mA
tOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 5 pF to 400 pF 250 ns
I2C Fast Mode – 3.3 V
VIH Input high-level threshold 0.7*VDDS V
VIL Input low-level threshold 0.3*VDDS V
Vhys Hysteresis 0.05*VDDS V
IIN Input current at each I/O pin with an input voltage between 0.1*VDDS to 0.9*VDDSS 31 80 µA
IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 31 80 µA
CIN Input capacitance 10 pF
VOL3 Output low-level threshold open-drain at 3-mA sink current 0.4 V
IOLmin Low-level output current @VOL=0.4V 3 mA
IOLmin Low-level output current @VOL=0.6V for full drive load (400pF/400KHz) 6 mA
tOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 10 pF to 200 pF (Proper External Resistor Value should be used as per I2C spec) 20+0.1*Cb 250 ns
Output fall time from VIHmin to VILmax with a bus capacitance CB from 300 pF to 400 pF (Proper External Resistor Value should be used as per I2C spec) 40 290
  1. VDDS in this table stands for corresponding power supply (i.e. vddshv3). For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [11] column.

IQ1833 Buffers DC Electrical Characteristics

Table 5-12 summarizes the DC electrical characteristics for IQ1833 Buffers.

Table 5-12 IQ1833 Buffers DC Electrical Characteristics

PARAMETER MIN NOM MAX UNIT
Signal Names in MUXMODE 0: tclk;
Balls: E20;
1.8-V Mode
VIH Input high-level threshold (Does not meet JEDEC VIH) 0.75 * VDDS V
VIL Input low-level threshold (Does not meet JEDEC VIL) 0.25 * VDDS V
VHYS Input hysteresis voltage 100 mV
IIN Input current at each I/O pin 2 11 µA
CPAD Pad capacitance (including package capacitance) 1 pF
3.3-V Mode
VIH Input high-level threshold (Does not meet JEDEC VIH) 2.0 V
VIL Input low-level threshold (Does not meet JEDEC VIL) 0.6 V
VHYS Input hysteresis voltage 400 mV
IIN Input current at each I/O pin 5 11 µA
CPAD Pad capacitance (including package capacitance) 1 pF
  1. VDDS in this table stands for corresponding power supply (i.e. vddshv3). For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [11] column.

IHHV1833 Buffers DC Electrical Characteristics

Table 5-13 summarizes the DC electrical characteristics for IHHV1833 Buffers.

Table 5-13 IHHV1833 Buffers DC Electrical Characteristics

PARAMETER MIN NOM MAX UNIT
Signal Names in MUXMODE 0: porz / rtc_iso / rtc_porz / wakeup [3:0];
Balls: F22 / AF14 / AB17 / AD17 / AC17 / AB16 / AC16;
1.8-V Mode
VIH Input high-level threshold 1.2(1) V
VIL Input low-level threshold 0.4 V
VHYS Input hysteresis voltage 40 mV
IIN Input current at each I/O pin 0.02 1 µA
CPAD Pad capacitance (including package capacitance) 1 pF
3.3-V Mode
VIH Input high-level threshold 1.2(1) V
VIL Input low-level threshold 0.4 V
VHYS Input hysteresis voltage 40 mV
IIN Input current at each I/O pin 5 8 µA
CPAD Pad capacitance (including package capacitance) 1 pF
  1. The IHHV1833 buffer exists in the dual-voltage IO logic that can be powered by either 1.8V or 3.3V provided by vddshv3. However, the vddshv3 supply is only used for input protection circuitry, not for logic functionality. The logic in this buffer operates entirely on the vdds18v supply. Therefore, IHHV control is asserted whenever the input is low and vdds18v is valid.

LVCMOS OSC Buffers DC Electrical Characteristics

Table 5-14 summarizes the DC electrical characteristics for LVCMOS OSC Buffers.

Table 5-14 LVCMOS OSC Buffers DC Electrical Characteristics

PARAMETER MIN NOM MAX UNIT
Signal Names in MUXMODE 0: rtc_osc_xi_clkin32 / rtc_osc_xo;
Balls: AE14 / AD14;
1.8-V Mode
VIH Input high-level threshold 0.65 * VDDS V
VIL Input low-level threshold 0.35 * VDDS V
VHYS Input hysteresis voltage 150 mV
CPAD Pad capacitance (including package capacitance) 3 pF
  1. VDDS in this table stands for corresponding power supply (i.e. vddshv3). For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [11] column.

LVCMOS CSI2 DC Electrical Characteristics

Table 5-15 summarizes the DC electrical characteristics for LVSMOS CSI2 Buffers.

Table 5-15 LVCMOS CSI2 DC Electrical Characteristics

PARAMETER MIN NOM MAX UNIT
Signals MUXMODE0 : csi2_0_dx[4:0]; csi2_0_dy[4:0]; csi2_1_dx[2:0]; csi2_1_dy[2:0];
Bottom Balls: AE1 / AD2 / AF1 / AE2 / AF2 / AF3 / AH4 / AG4 / AH3 / AG3 / AG5 / AH5 / AG6 / AH6 / AH7 / AG7
MIPI D-PHY Mode Low-Power Receiver (LP-RX)
VIH Input high-level voltage 880   1350 mV
VIL Input low-level voltage     550 mV
VITH Input high-level threshold     880 mV
VITL Input low-level threshold 550     mV
VHYS Input hysteresis 25     mV
MIPI D-PHY Mode Ultralow Power Receiver (ULP-RX)
VIH Input high-level voltage 880     mV
VIL Input low-level voltage     300 mV
VITH Input high-level threshold     880 mV
VITL Input low-level threshold 300     mV
VHYS Input hysteresis 25     mV
MIPI D-PHY Mode High-Speed Receiver (HS-RX)
VIDTH Differential input high-level threshold 70     mV
VIDTL Differential input low-level threshold     –70 mV
VIDMAX Maximum differential input voltage     270 mV
VIHHS Single-ended input high voltage     460 mV
VILHS Single-ended input low voltage –40     mV
VCMRXDC Differential input common-mode voltage 70   330 mV
ZID Differential input impedance 80 100 125 Ω
  1. VITH is the voltage at which the receiver is required to detect a high state in the input signal.
  2. VITL is the voltage at which the receiver is required to detect a low state in the input signal. VITL is larger than the maximum single-ended line high voltage during HS transmission. Therefore, both low-power (LP) receivers will detect low during HS signaling.
  3. To reduce noise sensitivity on the received signal, the LP receiver is required to incorporate a hysteresis, VHYST. VHYST is the difference between the VITH threshold and the VITL threshold.
  4. VITL is the voltage at which the receiver is required to detect a low state in the input signal. Specification is relaxed for detecting 0 during ultralow power (ULP) state. The LP receiver is not required to detect HS single-ended voltage as 0 in this state.
  5. Excluding possible additional RF interference of 200 mVPP beyond 450 MHz.
  6. This value includes a ground difference of 50 mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450 MHz.
  7. This number corresponds to the VODMAX transmitter.
  8. Common mode is defined as the average voltage level of X and Y: VCMRX = (VX + VY) / 2.
  9. Common mode ripple may be due to tR or tF and transmission line impairments in the PCB.
  10. For more information regarding the pin name (or ball name) and corresponding signal name, see Table 4-7, CSI 2 Signal Descriptions.

BMLB18 Buffers DC Electrical Characteristics

Table 5-16 summarizes the DC electrical characteristics for BMLB18 Buffers.

Table 5-16 BMLB18 Buffers DC Electrical Characteristics

PARAMETER MIN NOM MAX UNIT
Signal Names in MUXMODE 0: mlbp_dat_n / mlbp_dat_p / mlbp_sig_n / mlbp_sig_p / mlbp_clk_n / mlbp_clk_p;
Balls: AB2 / AB1 / AA2 / AA1 / AC2 / AC1;
1.8-V Mode
VIH/VIL Input high-level threshold VCM ± 50mV V
VHYS Input hysteresis voltage NONE mV
VOD Differential output voltage (measured with 50ohm resistor between PAD and PADN) 300 500 mV
VCM Common mode output voltage 1 1.5 V
CPAD Pad capacitance (including package capacitance) 4 pF

BC1833IHHV Buffers DC Electrical Characteristics

Table 5-17 summarizes the DC electrical characteristics for BC1833IHHV Buffers.

Table 5-17 BC1833IHHV Buffers DC Electrical Characteristics

PARAMETER MIN NOM MAX UNIT
Signal Names in MUXMODE 0: on_off;
Balls: Y11;
1.8-V Mode
VOH Output high-level threshold (IOH = 2 mA) VDDS-0.45 V
VOL Output low-level threshold (IOL = 2 mA) 0.45 V
IDRIVE Pin Drive strength at PAD Voltage = 0.45V or VDDS-0.45V 6 mA
IIN Input current at each I/O pin 6 12 µA
IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 6 µA
CPAD Pad capacitance (including package capacitance) 4 pF
3.3-V Mode
VOH Output high-level threshold (IOH =100µA) VDDS-0.2 V
VOL Output low-level threshold (IOL = 100µA) 0.2 V
IDRIVE Pin Drive strength at PAD Voltage = 0.45V or VDDS-0.45V 6 mA
IIN Input current at each I/O pin 60 µA
IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 60 µA
CPAD Pad capacitance (including package capacitance) 4 pF
  1. VDDS in this table stands for corresponding power supply (i.e. vddshv3). For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [11] column.

USBPHY DC Electrical Characteristics

NOTE

USB1 instance is compliant with the USB3.0 SuperSpeed Transmitter and Receiver Normative Electrical Parameters as defined in the USB3.0 Specification Rev 1.0 dated Jun 6, 2011.

NOTE

USB1 and USB2 Electrical Characteristics are compliant with USB2.0 Specification Rev 2.0 dated April 27, 2000 including ECNs and Errata as applicable.

Dual Voltage SDIO1833 DC Electrical Characteristics

Table 5-18 summarizes the DC electrical characteristics for SDIO1833 Buffers.

Table 5-18 Dual Voltage SDIO1833 DC Electrical Characteristics

PARAMETER MIN NOM MAX UNIT
Signal Names in Mode 0: mmc1_clk, mmc1_cmd, mmc1_data[3:0]
Bottom Balls: W6 / Y6 / AA6 / Y4 / AA5 / Y3
1.8-V Mode
VIH Input high-level threshold 1.27 V
VIL Input low-level threshold 0.58 V
VHYS Input hysteresis voltage 50 (2) mV
IIN Input current at each I/O pin 30 µA
IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 30 µA
IIN with pulldown enabled Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 50 120 210 µA
IIN with pullup enabled Input current at each I/O pin with weak pullup enabled measured when PAD = 0 60 120 200 µA
CPAD Pad capacitance (including package capacitance) 5 pF
VOH Output high-level threshold (IOH = 2 mA) 1.4 V
VOL Output low-level threshold (IOL = 2 mA) 0.45 V
3.3-V Mode
VIH Input high-level threshold 0.625 × VDDS V
VIL Input low-level threshold 0.25 × VDDS V
VHYS Input hysteresis voltage 40 (2) mV
IIN Input current at each I/O pin 110 µA
IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 110 µA
IIN with pulldown enabled Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 40 100 290 µA
IIN with pullup enabled Input current at each I/O pin with weak pullup enabled measured when PAD = 0 10 100 290 µA
CPAD Pad capacitance (including package capacitance) 5 pF
VOH Output high-level threshold (IOH = 2 mA) 0.75 × VDDS V
VOL Output low-level threshold (IOL = 2 mA) 0.125 × VDDS V
  1. VDDS in this table stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [11] column.
  2. Hysteresis is enabled/disabled with CTRL_CORE_CONTROL_HYST_1.SDCARD_HYST register.

Dual Voltage LVCMOS DC Electrical Characteristics

Table 5-19 summarizes the DC electrical characteristics for Dual Voltage LVCMOS Buffers.

Table 5-19 Dual Voltage LVCMOS DC Electrical Characteristics

PARAMETER MIN NOM MAX UNIT
1.8-V Mode
VIH Input high-level threshold 0.65*VDDS V
VIL Input low-level threshold 0.35*VDDS V
VHYS Input hysteresis voltage 100 mV
VOH Output high-level threshold (IOH = 2 mA) VDDS-0.45 V
VOL Output low-level threshold (IOL = 2 mA) 0.45 V
IDRIVE Pin Drive strength at PAD Voltage = 0.45V or VDDS-0.45V 6 mA
IIN Input current at each I/O pin 16 µA
IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 16 µA
IIN with pulldown enabled Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 50 120 210 µA
IIN with pullup enabled Input current at each I/O pin with weak pullup enabled measured when PAD = 0 60 120 200 µA
CPAD Pad capacitance (including package capacitance) 4 pF
ZO Output impedance (drive strength) 40 Ω
3.3-V Mode
VIH Input high-level threshold 2 V
VIL Input low-level threshold 0.8 V
VHYS Input hysteresis voltage 200 mV
VOH Output high-level threshold (IOH = 100 µA) VDDS-0.2 V
VOL Output low-level threshold (IOL = 100 µA) 0.2 V
IDRIVE Pin Drive strength at PAD Voltage = 0.45V or VDDS-0.45V 6 mA
IIN Input current at each I/O pin 65 µA
IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 65 µA
IIN with pulldown enabled Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 40 100 200 µA
IIN with pullup enabled Input current at each I/O pin with weak pullup enabled measured when PAD = 0 10 100 290 µA
CPAD Pad capacitance (including package capacitance) 4 pF
ZO Output impedance (drive strength) 40 Ω
  1. VDDS in this table stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [11] column.

SATAPHY DC Electrical Characteristics

NOTE

The SATA module is compliant with the electrical parameters specified in the SATA-IO SATA Specification, Revision 3.2, August 7, 2013.

SERDES DC Electrical Characteristics

NOTE

The PCIe interfaces are compliant with the electrical parameters specified in PCI Express® Base Specification Revision 3.0.

NOTE

USB1 instance is compliant with the USB3.0 SuperSpeed Transmitter and Receiver Normative Electrical Parameters as defined in the USB3.0 Specification Rev 1.0 dated Jun 6, 2011.

Thermal Characteristics

For reliability and operability concerns, the maximum junction temperature of the Device has to be at or below the TJ value identified in Table 5-4, Recommended Operating Conditions.

It is recommended to perform thermal simulations at the system level with the worst case device power consumption.

Package Thermal Characteristics

Table 5-20 provides the thermal resistance characteristics for the package used on this device.

NOTE

Power dissipation of 1.5 W and an ambient temperature of 85°C is assumed for ZBO package.

Table 5-20 Thermal Resistance Characteristics

NO. PARAMETER DESCRIPTION °C/W(1) AIR FLOW (m/s)(2)
T1 JC Junction-to-case 0.41 N/A
T2 JB Junction-to-board 4.74 N/A
T3 JA Junction-to-free air 11.9 0
T4 Junction-to-moving air 8.9 1
T5 8.0 2
T6 7.4 3
T7 ΨJT Junction-to-package top 0.22 0
T8 0.22 1
T9 0.22 2
T10 0.23 3
T11 ΨJB Junction-to-board 4.12 0
T12 3.73 1
T13 3.59 2
T14 3.48 3
  1. These measurements were conducted in a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] measurement, which was conducted in a JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:
    • JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)
    • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
    • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
    • JESD51-9, Test Boards for Area Array Surface Mount Packages
  2. m/s = meters per second

Power Supply Sequences

This section describes the power-up and power-down sequence required to ensure proper device operation. The power supply names described in this section comprise a superset of a family of compatible devices. Some members of this family will not include a subset of these power supplies and their associated device modules. Refer to the Section 4.2, Ball Characteristics of the Section 4, Terminal Configuration and Functions to determine which power supplies are applicable.

NOTE

RTC only mode is not supported feature.

Figure 5-2 and Figure 5-3 describe the device Power Sequencing when RTC-mode is NOT used.

AM5718-HIREL SPRS906_ELCH_04.gif Figure 5-2 Power-Up Sequencing
  1. Grey shaded areas are windows where it is valid to ramp the voltage rail.
  2. Blue dashed lines are not valid windows but show alternate ramp possibilities based on the associated note.
  3. RTC-only mode is not used and the following combinations are approved:
    - vdda_rtc can be combined with vdds18v
    - vdd_rtc can be combined with vdd
    - vddshv5 can be combined with other 1.8-V or 3.3-V vddshvn rails.
    If combinations listed above are not followed then sequencing for these 3 voltage rails should follow the RTC mode timing requirements. When using RTC mode timing:
    - vdda_rtc rises coincident with, or before, the 1.8-V interface supplies (such as vdds18v).
    - vdd_rtc rises coincident with vdd, or it may rise earlier. If rising earlier, it must rise after the 1.8-V interface supplies.
    - vddshv5 rises coincident with the other vddshvn rails (of the same voltage) or it can rise about the same time as the 1.8-V PHY supplies (such as vdd_usb1).
  4. vdd must ramp before or at the same time as vdd_mpu, vdd_gpu, vdd_dsp and vdd_iva.
  5. vdd_mpu, vdd_gpu, vdd_dsp, vdd_iva can be ramped at the same time or can be staggered.
  6. If any of the vddshv[1-7,9-11] rails (not including vddshv8) are used as 1.8-V only, then these rails can be combined with vdds18v.
  7. vddshv8 is separated out to show support for dual voltage. If single voltage is used then vddshv8 can be combined with other vddshvn rails but vddshv8 must ramp after vdd.
  8. vdds and vdda rails must not be combined together, with the one exception of vdda_rtc when RTC-mode is not supported.
  9. Pulse duration: rtc_porz must remain low 1ms after vdda_rtc, vddshv5, and vdd_rtc are ramped and stable.
  10. The SYS_32K source must be stable and at a valid frequency 1ms prior to de-asserting rtc_porz high.
  11. Pulse duration: resetn/porz must remain low a minimum of 12P(15) after xi_osc0 is stable and at a valid frequency. resetn/porz must also remain low until all supply rails are valid and stable.
  12. Setup time: sysboot[15:0] pins must be valid 2P(15) before porz is de-asserted high.
  13. Hold time: sysboot[15:0] pins must be valid 15P(15) after porz is de-asserted high.
  14. resetn to rstoutn delay is 2 ms.
  15. P = 1/(SYS_CLK1/610) frequency in ns.
  16. ddr1_vref0 may rise coincident with vdds_ddr1 or at a later time. However, it must be valid before porz rising.
AM5718-HIREL SPRS906_ELCH_05.gif Figure 5-3 Power-Down Sequencing (10)(12)
  1. Grey shaded areas are windows where it is valid to ramp the voltage rail.
  2. Blue dashed lines are not valid windows but show alternate ramp possibilities based on the associated note.
  3. xi_osc0 can be turned off anytime after porz assertion and must be turned off before vdda_osc voltage rail is shutdown.
  4. RTC-only mode is not used and the following combinations are approved:
    - vdda_rtc can be combined with vdds18v
    - vdd_rtc can be combined with vdd
    - vddshv5 can be combined with other 1.8-V or 3.3-V vddshvn rails
    If combinations listed above are not followed then sequencing for these 3 voltage rails should follow the RTC mode timing requirements. When using RTC mode timing:
    - vdda_rtc falls coincident with, or later than, the 1.8-V interface supplies (such as vdds18v).
    - vdd_rtc falls coincident with vdd, or it may fall later. If falling later, it must fall before, or coincident with, the 1.8-V interface supplies.
    - vddshv5 falls coincident with the other vddshvn rails (of the same voltage) or it can fall about the same time as the 1.8-V PHY supplies (such as vdd_usb1).
  5. vdd_mpu, vdd_gpu, vdd_dsp, vdd_iva can be ramped at the same time or can be staggered.
  6. vdd must ramp after or at the same time as vdd_mpu, vdd_gpu, vdd_dsp and vdd_iva
  7. If any of the vddshv[1-7,9-11] rails (not including vddshv8) are used as 1.8 V only, then these rails can be combined with vdds18v.
    - vddshv[1-7,9-11] is allowed to ramp down at either of the two points shown in the timing diagram in either 1.8-V mode or in 3.3-V mode.
    - If vddshv[1-7,9-11] ramps down at the later time in the diagram then the board design must guarantee that the vddshv[1-7,9-11] rail is never higher than 2 V above the vdds18v rail.
  8. vddshv8 is separated out to show support for dual voltage. If a dedicated LDO/supply source is used for vddshv8, then vddshv8 ramp down should occur at one of the two earliest points in the timing diagram. If vddshv8 is powered by the same supply source as the other vddshv[1-7,9-11] rails, then it is allowed to ramp down at either of the last two points in the timing diagram.
  9. The 1.8-V vdda_* supplies can either ramp down at the earlier time period shown or can be delayed to ramp down after the core supplies coincident with the vdds18v supply as long as porz is asserted (low) during the power down sequence.
  10. The power down sequence shown is the most general case and is always valid. An accelerated power down sequence is also available but is only valid when porz is asserted (low). This accelerated power down sequence has been implemented in the companion PMIC that is recommended for use with this SOC. The accelerated sequence has porz go low first, then all 3.3-V supplies simultaneously second, core supplies, DDR supplies and DDR references simultaneously third and all 1.8-V supplies simultaneously last.
  11. ddr1_vref0 may fall coincident with vdds_ddr1, or at a prior time but after porz is asserted low.
  12. Ramped Down is defined as reaching a voltage level of no more than 0.6 V.

Figure 5-4 describes vddshv[1-7,9-11] Supplies Falling Before vdds18v Supplies Delta.

AM5718-HIREL SPRS906_ELCH_06.gif Figure 5-4 vddshv* Supplies Falling After vdds18v Supplies Delta
  1. Vdelta MAX = 2 V
  2. If vddshv8 is powered by the same supply source as the other vddshv[1-7,9-11] rails.