SBASAO0A May   2023  – September 2023 AMC130M03

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Insulation Specifications
    6. 6.6  Safety-Related Certifications
    7. 6.7  Safety Limiting Values
    8. 6.8  Electrical Characteristics
    9. 6.9  Timing Requirements
    10. 6.10 Switching Characteristics
    11. 6.11 Timing Diagrams
    12. 6.12 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Noise Measurements
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Isolated DC/DC Converter
        1. 8.3.1.1 DC/DC Converter Failure Detection
      2. 8.3.2  High-Side Current Drive Capability
      3. 8.3.3  Isolation Channel Signal Transmission
      4. 8.3.4  Input ESD Protection Circuitry
      5. 8.3.5  Input Multiplexer
      6. 8.3.6  Programmable Gain Amplifier (PGA)
      7. 8.3.7  Voltage Reference
      8. 8.3.8  Internal Test Signals
      9. 8.3.9  Clocking and Power Modes
      10. 8.3.10 ΔΣ Modulator
      11. 8.3.11 Digital Filter
        1. 8.3.11.1 Digital Filter Implementation
          1. 8.3.11.1.1 Fast-Settling Filter
          2. 8.3.11.1.2 SINC3 and SINC3 + SINC1 Filter
        2. 8.3.11.2 Digital Filter Characteristic
      12. 8.3.12 Channel Phase Calibration
      13. 8.3.13 Calibration Registers
      14. 8.3.14 Register Map CRC
      15. 8.3.15 Temperature Sensor
        1. 8.3.15.1 Internal Temperature Sensor
        2. 8.3.15.2 External Temperature Sensor
        3. 8.3.15.3 Clock Selection for Temperature Sensor Operation
      16. 8.3.16 General-Purpose Digital Output (GPO)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Up and Reset
        1. 8.4.1.1 Power-On Reset
        2. 8.4.1.2 SYNC/RESET Pin
        3. 8.4.1.3 RESET Command
      2. 8.4.2 Start-Up Behavior After Power-Up
      3. 8.4.3 Start-Up Behavior After a Pin Reset or RESET Command
      4. 8.4.4 Start-Up Behavior After a Pause in CLKIN
      5. 8.4.5 Synchronization
      6. 8.4.6 Conversion Modes
        1. 8.4.6.1 Continuous-Conversion Mode
        2. 8.4.6.2 Global-Chop Mode
      7. 8.4.7 Power Modes
      8. 8.4.8 Standby Mode
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
        1. 8.5.1.1  Chip Select (CS)
        2. 8.5.1.2  Serial Data Clock (SCLK)
        3. 8.5.1.3  Serial Data Input (DIN)
        4. 8.5.1.4  Serial Data Output (DOUT)
        5. 8.5.1.5  Data Ready (DRDY)
        6. 8.5.1.6  Conversion Synchronization or System Reset (SYNC/RESET)
        7. 8.5.1.7  SPI Communication Frames
        8. 8.5.1.8  SPI Communication Words
        9. 8.5.1.9  Short SPI Frames
        10. 8.5.1.10 Communication Cyclic Redundancy Check (CRC)
        11. 8.5.1.11 SPI Timeout
      2. 8.5.2 ADC Conversion Data Format
      3. 8.5.3 Commands
        1. 8.5.3.1 NULL (0000 0000 0000 0000)
        2. 8.5.3.2 RESET (0000 0000 0001 0001)
        3. 8.5.3.3 STANDBY (0000 0000 0010 0010)
        4. 8.5.3.4 WAKEUP (0000 0000 0011 0011)
        5. 8.5.3.5 LOCK (0000 0101 0101 0101)
        6. 8.5.3.6 UNLOCK (0000 0110 0101 0101)
        7. 8.5.3.7 RREG (101a aaaa annn nnnn)
          1. 8.5.3.7.1 Reading a Single Register
          2. 8.5.3.7.2 Reading Multiple Registers
        8. 8.5.3.8 WREG (011a aaaa annn nnnn)
      4. 8.5.4 ADC Output Buffer and FIFO Buffer
      5. 8.5.5 Collecting Data for the First Time or After a Pause in Data Collection
    6. 8.6 AMC130M03 Registers
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Unused Inputs and Outputs
      2. 9.1.2 Antialiasing
      3. 9.1.3 Minimum Interface Connections
      4. 9.1.4 Multiple Device Configuration
      5. 9.1.5 Calibration
      6. 9.1.6 Troubleshooting
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Voltage Measurement
        2. 9.2.2.2 Current Shunt Measurement
        3. 9.2.2.3 Temperature Measurement
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Global-Chop Mode

The AMC130M03 incorporates a global-chop mode option to reduce offset error and offset drift inherent to the device resulting from mismatch in the internal circuitry to very low levels. When global-chop mode is enabled by setting the GC_EN bit in the GLOBAL_CHOP_CFG register, the device uses the conversion results from two consecutive internal conversions taken with opposite input polarity to cancel the device offset voltage. Conversion n is taken with normal input polarity. The device then reverses the internal input polarity for conversion n + 1. The average of two consecutive conversions (n and n + 1, n + 1 and n + 2, and so on) yields the final offset compensated result.

Figure 8-22 shows a block diagram of the global-chop mode implementation. The combined PGA and ADC internal offset voltage is modeled as VOFS. Only this device-inherent offset voltage is reduced by global-chop mode. Offset in the external circuitry connected to the analog inputs is not affected by global-chop mode.

GUID-20201025-CA0I-RK4T-D9KT-GJDNXQ6MLGRH-low.gif Figure 8-22 Global-Chop Mode Implementation

The conversion period in global-chop mode differs from the conversion time when global-chop mode is disabled (tDATA = OSR × tMOD). Figure 8-23 shows the conversion timing for an ADC channel using global-chop mode.

GUID-20201025-CA0I-DMB0-GQXK-K8BZLMMJTS7P-low.gif Figure 8-23 Conversion Timing With Global-Chop Mode Enabled

Every time the device swaps the input polarity, the digital filter is reset. The ADC then always takes three internal conversions to produce one settled global-chop conversion result.

The AMC130M03 provides a programmable delay (tGC_DLY) between the end of the previous conversion period and the beginning of the subsequent conversion period after the input polarity is swapped. This delay allows external input circuitry to settle because the chopping switches interface directly with the analog inputs. The GC_DLY[3:0] bits in the GLOBAL_CHOP_CFG register configure the delay after chopping the inputs. The global-chop delay is selected in terms of modulator clock periods from 2 to 65,536 × tMOD.

The effective conversion period in global-chop mode follows Equation 12. A DRDY falling edge is generated each time a new global-chop conversion becomes available to the host.

The conversion process of all ADC channels in global-chop mode is restarted in the following two conditions so that all channels start sampling at the same time:

  • Falling edge of the SYNC/RESET pin
  • Change of the OSR setting

The conversion period of the first conversion after the ADC channels are reset is considerably longer than the conversion period of all subsequent conversions mentioned in Equation 12 because the device must first perform two fully settled internal conversions with the input polarity swapped. The conversion period for the first conversion in global-chop mode follows Equation 13.

Equation 12. tGC_CONVERSION = tGC_DLY + 3 × OSR × tMOD
Equation 13. tGC_FIRST_CONVERSION = tGC_DLY + 3 × OSR × tMOD + tGC_DLY + 3 × OSR × tMOD + 44 × tMOD

Using global-chop mode reduces the ADC noise listed in Table 7-1 at a given OSR by a factor of √2 because two consecutive internal conversions are averaged to yield one global-chop conversion result. The DC test signal cannot be measured in global-chop mode.

Phase calibration is automatically disabled in global-chop mode.