SBASAD0B March   2022  – December 2024 AMC23C10

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information 
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications (Reinforced Isolation)
    7. 5.7  Safety-Related Certifications 
    8. 5.8  Safety Limiting Values 
    9. 5.9  Electrical Characteristics 
    10. 5.10 Switching Characteristics 
    11. 5.11 Timing Diagrams
    12. 5.12 Insulation Characteristics Curves
    13. 5.13 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog Input
      2. 6.3.2 Isolation Channel Signal Transmission
      3. 6.3.3 Digital Outputs
      4. 6.3.4 Power-Up and Power-Down Behavior
      5. 6.3.5 VDD1 Brownout and Power-Loss Behavior
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Voltage Zero-Crossing Detection
      2. 7.2.2 Design Requirements
      3. 7.2.3 Detailed Design Procedure
      4. 7.2.4 Application Curves
    3. 7.3 Best Design Practices
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Digital Outputs

The AMC23C10 provides an open-drain and a push-pull output. The open-drain output is actively pulled low when VINP is above VINN and returns to a high-impedance (Hi-Z) state when VINP is below the VINN level. The push-pull output is actively driven high when VINP is above VINN and is actively driven low when VINP is below the VINN level. The comparator has built-in hysteresis (VHYS) that is centered around VINN, see Figure 6-1.

The open-drain output is diode-connected to the VDD2 supply (see the Functional Block Diagram), meaning that the output cannot be pulled more than 500mV above the VDD2 supply before significant current begins to flow into the OUT1 pin. In particular, the open-drain output is clamped to one diode voltage above ground if VDD2 is at the GND2 level. This behavior is indicated by the gray shadings in Figure 6-3 through Figure 6-8.

On a system level, the CMTI performance of an open-drain signal line depends on the value of the pullup resistor. During a common-mode transient event with a high slew rate (high dV/dt), the open-drain signal line can be pulled low because of parasitic capacitive coupling between the high side and the low side of the printed circuit board (PCB). The effect of the parasitic coupling on the signal level is a function of the pullup strength and a lower value pullup resistor results in better CMTI performance. The AMC23C10 is characterized by a relatively weak pullup resistor value of 10kΩ to make sure that the specified CMTI performance is met in a typical application with a 4.7kΩ or lower pullup resistor.