SLUSBZ9C August   2015  – September 2016 BQ25120 , BQ25121

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Ship Mode
      2. 9.3.2  High Impedance Mode
      3. 9.3.3  Active Battery Only Connected
      4. 9.3.4  Voltage Based Battery Monitor
      5. 9.3.5  Sleep Mode
      6. 9.3.6  Input Voltage Based Dynamic Power Management (VIN(DPM))
      7. 9.3.7  Input Overvoltage Protection and Undervoltage Status Indication
      8. 9.3.8  Battery Charging Process and Charge Profile
      9. 9.3.9  Dynamic Power Path Management Mode
      10. 9.3.10 Battery Supplement Mode
      11. 9.3.11 Default Mode
      12. 9.3.12 Termination and Pre-Charge Current Programming by External Components (IPRETERM)
      13. 9.3.13 Input Current Limit Programming by External Components (ILIM)
      14. 9.3.14 Charge Current Programming by External Components (ISET)
      15. 9.3.15 Safety Timer and Watchdog Timer
      16. 9.3.16 External NTC Monitoring (TS)
      17. 9.3.17 Thermal Protection
      18. 9.3.18 Typical Application Power Dissipation
      19. 9.3.19 Status Indicators (PG and INT)
      20. 9.3.20 Chip Disable (CD)
      21. 9.3.21 Buck (PWM) Output
      22. 9.3.22 Load Switch / LDO Output and Control
      23. 9.3.23 Manual Reset Timer and Reset Output (MR and RESET)
    4. 9.4 Device Functional Modes
    5. 9.5 Programming
      1. 9.5.1 Serial Interface Description
      2. 9.5.2 F/S Mode Protocol
    6. 9.6 Register Maps
      1. 9.6.1  Status and Ship Mode Control Register
      2. 9.6.2  Faults and Faults Mask Register
      3. 9.6.3  TS Control and Faults Masks Register
      4. 9.6.4  Fast Charge Control Register
      5. 9.6.5  Termination/Pre-Charge and I2C Address Register
      6. 9.6.6  Battery Voltage Control Register
      7. 9.6.7  SYS VOUT Control Register
      8. 9.6.8  Load Switch and LDO Control Register
      9. 9.6.9  Push-button Control Register
      10. 9.6.10 ILIM and Battery UVLO Control Register
      11. 9.6.11 Voltage Based Battery Monitor Register
      12. 9.6.12 VIN_DPM and Timers Register
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Default Settings
        2. 10.2.2.2 Choose the Correct Inductance and Capacitance
        3. 10.2.2.3 Calculations
          1. 10.2.2.3.1 Program the Fast Charge Current (ISET)
          2. 10.2.2.3.2 Program the Input Current Limit (ILIM)
          3. 10.2.2.3.3 Program the Pre-charge/termination Threshold (IPRETERM)
          4. 10.2.2.3.4 TS Resistors (TS)
      3. 10.2.3 Application Performance Curves
        1. 10.2.3.1 Charger Curves
        2. 10.2.3.2 SYS Output Curves
        3. 10.2.3.3 Load Switch and LDO Curves
        4. 10.2.3.4 LS/LDO Output Curves
        5. 10.2.3.5 Timing Waveforms Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Related Links
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Community Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

A typical design is shown in Figure 35. This design uses the BQ25120 with external resistors for ILIM, IPRETERM, and ISET. These are not needed if these values are set with a host controller through I2C commands. This design also shows the TS resistors, which is also optional.

When powering up in default mode the battery voltage is the default for the part (4.2 V), the SYS output is the default (1.8 V). External resistors set the charge current to 40 mA, the termination current to 10% (4 mA), and the input current limit to 100 mA. If the I2C interface is used the part goes to the internal default settings until changed by the host.

10.2 Typical Application

BQ25120 BQ25121 Typ_App_Schematic_slusbz9.gif Figure 35. Typical Application Circuit

10.2.1 Design Requirements

This application is for a low power system that has varying loads from less than 10 mA up to 300 mA. It must work with a valid adaptor or USB power input. Below are some of the key components that are needed in normal operation. For this example, the fast charge current is 50 mA, input current limit is 400 mA and the pre-charge and termination current is 10% of the fast charge current.

  • Supply voltage = 3.4 V to 20 V
  • Fast charge current is default to 10 mA with ISET pin shorted to ground. To program the fast charge current, connect an external resistor from ISET to ground.
  • Input current limit is default to 100 mA with ILIM pin shorted to ground. To program the input current limit, connect an external resistor from ILIM to ground.
  • Termination current threshold is default to 2 mA with IPRETERM pin shorted to ground. To program the input current limit, connect an external resistor from IPRETERM to ground.
  • A 2.2-µH inductor is needed between SW pin and SYS pin for PWM output.
  • TS- Battery temperature sense needs a NTC connected on TS pin.

10.2.2 Detailed Design Procedure

See Figure 35 for an example of the application diagram.

10.2.2.1 Default Settings

  • • Connect ISET, ILIM and IPRETERM pins to ground to program fast charge current to 10mA, input current limit to 100mA and pre-charge/termination current to 2 mA.
  • BAT_UVLO = 3 V.
  • VSYS = 1.8 V
  • LS/LDO is LS
  • VBREG = 4.2 V
  • VIN_DPM is enabled and VIN_DPM Threshold = 4.6 V.
  • Safety Timer = 3 hr
  • If the function is not needed, connect TS to the center tab of the resistor divider between VIN and the ground. (pull up resistor = 14 kΩ, pull down resistor = 14.3 kΩ)

10.2.2.2 Choose the Correct Inductance and Capacitance

Refer to the Buck (PWM) Output section for the detailed procedure to determine the optimal inductance and capacitance for the buck output.

10.2.2.3 Calculations

10.2.2.3.1 Program the Fast Charge Current (ISET)

Equation 10. RISET = KISET/ICHG

KISET = 200 AΩ from the Specifications table

Equation 11. RISET = 200 AΩ / 0.05A = 4 kΩ

Select the closest standard value, which in this case is 4.99 kΩ. Connect this resistor between ISET pin and GND.

10.2.2.3.2 Program the Input Current Limit (ILIM)

Equation 12. RILIM = KILIM/II_MAX

KILIM = 200 AΩ from the Specifications table

Equation 13. RILIM = 200 AΩ / 0.4A = 500 Ω

Select the closest standard value, which in this case is 499 Ω. Connect this resistor between ILIM pin and GND.

10.2.2.3.3 Program the Pre-charge/termination Threshold (IPRETERM)

According to Table 3, the RIPRETERM is 4990 Ω for 10% termination threshold. Therefore, connect a 4.99 kΩ resistor between IPRETERM pin and GND.

10.2.2.3.4 TS Resistors (TS)

The voltage at TS is monitored to determine that the battery is at a safe temperature during charging. This device uses JEITA temperature profile which has four temperature thresholds. Refer to Specifications for the detailed thresholds number.

The TS circuit is shown in Figure 16. The resistor values can be calculated using Equation 1 and Equation 2.

10.2.3 Application Performance Curves

10.2.3.1 Charger Curves

BQ25120 BQ25121 G001_slusbz9.gif
Figure 36. Battery Connected to V(BAT)
BQ25120 BQ25121 G003_slusbz9.gif
Figure 38. Entering DPPM Mode
BQ25120 BQ25121 G005_slusbz9.gif
Figure 40. Entering Battery Supplement Mode
BQ25120 BQ25121 G008_slusbz9.gif
Figure 42. Charger On/Off Using CD
BQ25120 BQ25121 G002_slusbz9.gif
Figure 37. Power Supply Connected to VIN
BQ25120 BQ25121 G004_slusbz9.gif
Figure 39. Exiting DPPM Mode
BQ25120 BQ25121 G006_slusbz9.gif
Figure 41. Exiting Battery Supplement Mode
BQ25120 BQ25121 G009_slusbz9.gif
Figure 43. OVP Fault

10.2.3.2 SYS Output Curves

BQ25120 BQ25121 D001_SLUSBZ9.gif
TA = 25°C VSYS = 1.2 V
Figure 44. 1.2 VSYS System Efficiency
BQ25120 BQ25121 D007_SLUSBZ9.gif
TA = 25°C VSYS = 1.8 V
Figure 46. 1.8 VSYS System Efficiency
BQ25120 BQ25121 D013_SLUSBZ9.gif
TA = 25°C VSYS = 3.3 V
Figure 48. 3.3 VSYS System Efficiency
BQ25120 BQ25121 D006_SLUSBZ9.gif
TA = 25°C VSYS = 1.5 V
Figure 50. 1.5 VSYS Load Regulation
BQ25120 BQ25121 D012_SLUSBZ9.gif
TA = 25°C VSYS = 2.5 V
Figure 52. 2.5 VSYS Load Regulation
BQ25120 BQ25121 D002_SLUSBZ9.gif
TA = 25°C VSYS = 1.2 V
Figure 54. 1.2 VSYS Line Regulation
BQ25120 BQ25121 D008_SLUSBZ9.gif
TA = 25°C VSYS = 1.8 V
Figure 56. 1.8 VSYS Line Regulation
BQ25120 BQ25121 D014_SLUSBZ9.gif
TA = 25°C VSYS = 3.3 V
Figure 58. 3.3 VSYS Line Regulation
BQ25120 BQ25121 G010_slusbz9.gif
ILOAD = 10 µA
Figure 60. Light Load Operation Showing SW
BQ25120 BQ25121 G012_slusbz9.gif
ILOAD = 1 mA
Figure 62. Light Load Operation Showing SW
BQ25120 BQ25121 G014_slusbz9.gif
ILOAD = 100 mA
Figure 64. Light Load Operation Showing SW
BQ25120 BQ25121 G016_slusbz9.gif
ILOAD = 300 mA
Figure 66. Light Load Operation Showing SW
BQ25120 BQ25121 G018_slusbz9.gif
VSYS = 1.8 V
Figure 68. 1.8 VSYS Load Transient, 0 to 50 mA
BQ25120 BQ25121 G020_slusbz9.gif
VSYS = 2.5 V
Figure 70. 2.5 VSYS Load Transient, 0 to 50 mA
BQ25120 BQ25121 G022_slusbz9.gif
VSYS = 1.2 V
Figure 72. 1.2 VSYS Load Transient, 0 to 200 mA
BQ25120 BQ25121 G024_slusbz9.gif
VSYS = 2.1 V
Figure 74. 2.1 VSYS Load Transient, 0 to 200 mA
BQ25120 BQ25121 G026_slusbz9.gif
VSYS = 3.3 V
Figure 76. 3.3 VSYS Load Transient, 0 to 200 mA
BQ25120 BQ25121 G028_slusbz9.gif
Figure 78. Short Circuit and Recovery for SYS
BQ25120 BQ25121 D004_SLUSBZ9.gif
TA = 25°C VSYS = 1.5 V
Figure 45. 1.5 VSYS System Efficiency
BQ25120 BQ25121 D010_SLUSBZ9.gif
TA = 25°C VSYS = 2.5 V
Figure 47. 2.5 VSYS System Efficiency
BQ25120 BQ25121 D003_SLUSBZ9.gif
TA = 25°C VSYS = 1.2 V
Figure 49. 1.2 VSYS Load Regulation
BQ25120 BQ25121 D009_SLUSBZ9.gif
TA = 25°C VSYS = 1.8 V
Figure 51. 1.8 VSYS Load Regulation
BQ25120 BQ25121 D015_SLUSBZ9.gif
TA = 25°C VSYS = 3.3 V
Figure 53. 3.3 VSYS Load Regulation
BQ25120 BQ25121 D005_SLUSBZ9.gif
TA = 25°C VSYS = 1.5 V
Figure 55. 1.5 VSYS Line Regulation
BQ25120 BQ25121 D011_SLUSBZ9.gif
TA = 25°C VSYS = 2.1 V
Figure 57. 2.1 VSYS Line Regulation
BQ25120 BQ25121 D023_SLUSBZ9.gif
Figure 59. 1.8 VSYS Switching Frequency vs Load Current
BQ25120 BQ25121 G011_slusbz9.gif
ILOAD = 100 mA
Figure 61. Light Load Operation Showing SW
BQ25120 BQ25121 G013_slusbz9.gif
ILOAD = 10 mA
Figure 63. Light Load Operation Showing SW
BQ25120 BQ25121 G015_slusbz9.gif
ILOAD = 200 mA
Figure 65. Light Load Operation Showing SW
BQ25120 BQ25121 G017_slusbz9.gif
VSYS = 1.2 V
Figure 67. 1.2 VSYS Load Transient, 0 to 50 mA
BQ25120 BQ25121 G019_slusbz9.gif
VSYS = 2.1 V
Figure 69. 2.1 VSYS Load Transient, 0 to 50 mA
BQ25120 BQ25121 G021_slusbz9.gif
VSYS = 3.3 V
Figure 71. 3.3 VSYS Load Transient, 0 to 50 mA
BQ25120 BQ25121 G023_slusbz9.gif
VSYS = 1.8 V
Figure 73. 1.8 VSYS Load Transient, 0 to 200 mA
BQ25120 BQ25121 G025_slusbz9.gif
VSYS = 2.5 V
Figure 75. 2.5 VSYS Load Transient, 0 to 200 mA
BQ25120 BQ25121 G027_slusbz9.gif
Figure 77. Startup Showing SS on SYS in PWM Mode

10.2.3.3 Load Switch and LDO Curves

BQ25120 BQ25121 G029_slusbz9.gif
Figure 79. Short Circuit and Recovery for LS
BQ25120 BQ25121 G031_slusbz9.gif
VSLSDO = 0.8 V
Figure 81. 0.8 VLSLDO Load Transient, 0 to 10 mA
BQ25120 BQ25121 G033_slusbz9.gif
VSLSDO = 1.8 V
Figure 83. 1.8 VLSLDO Load Transient, 0 to 10 mA
BQ25120 BQ25121 G035_slusbz9.gif
VSLSDO = 3.3 V
Figure 85. 3.3 VLSLDO Load Transient, 0 to 10 mA
BQ25120 BQ25121 G037_slusbz9.gif
VSLSDO = 1.2 V
Figure 87. 1.2 VLSLDO Load Transient, 0 to 100 mA
BQ25120 BQ25121 G039_slusbz9.gif
VSLSDO = 2.5 V
Figure 89. 2.5 VLSLDO Load Transient, 0 to 100 mA
BQ25120 BQ25121 G030_slusbz9.gif
Figure 80. Startup Showing SS on LS/LDO Output
BQ25120 BQ25121 G032_slusbz9.gif
VSLSDO = 1.2 V
Figure 82. 1.2 VLSLDO Load Transient, 0 to 10 mA
BQ25120 BQ25121 G034_slusbz9.gif
VSLSDO = 2.5 V
Figure 84. 2.5 VLSLDO Load Transient, 0 to 10 mA
BQ25120 BQ25121 G036_slusbz9.gif
VSLSDO = 0.8 V
Figure 86. 0.8 VLSLDO Load Transient, 0 to 100 mA
BQ25120 BQ25121 G038_slusbz9.gif
VSLSDO = 1.8 V
Figure 88. 1.8 VLSLDO Load Transient, 0 to 100 mA
BQ25120 BQ25121 G040_slusbz9.gif
VSLSDO = 3.3 V
Figure 90. 3.3 VLSLDO Load Transient, 0 to 100 mA

10.2.3.4 LS/LDO Output Curves

BQ25120 BQ25121 G041_slusbz9.gif
Figure 91. Startup Showing SS on LS/LDO in LDO Mode
BQ25120 BQ25121 G042_slusbz9.gif
Figure 92. Short Circuit and Recovery for LDO

10.2.3.5 Timing Waveforms Curves

BQ25120 BQ25121 G043_slusbz9.gif
Figure 93. Show PG and INT Timing (VIN Insertion)
BQ25120 BQ25121 G045_slusbz9.gif
Figure 95. PG Functions as Shifted MR Output
BQ25120 BQ25121 G047_slusbz9.gif
Wake1 = 500 ms Wake2 = 1 s
Figure 97. Show MR Timing
BQ25120 BQ25121 G049_slusbz9.gif
RESET = 4 s
Figure 99. RESET Timing
BQ25120 BQ25121 G051_slusbz9.gif
RESET = 14 s
Figure 101. RESET Timing
BQ25120 BQ25121 G044_slusbz9.gif
Figure 94. Show PG and INT Timing (VIN Removal)
BQ25120 BQ25121 G046_slusbz9.gif
Figure 96. PG Functions as Shifted MR Output
BQ25120 BQ25121 G048_slusbz9.gif
Wake1 = 50 ms Wake2 = 1.5 s
Figure 98. Show MR Timing
BQ25120 BQ25121 G050_slusbz9.gif
RESET = 8 s
Figure 100. RESET Timing
BQ25120 BQ25121 G052_lusbz9.gif
Figure 102. RESET Timing and Enter Ship Mode