SLUSE97 November   2023 BQ76905

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Supply Current
    6. 6.6  Digital I/O
    7. 6.7  REGOUT LDO
    8. 6.8  Voltage References
    9. 6.9  Coulomb Counter
    10. 6.10 Coulomb Counter Digital Filter
    11. 6.11 Current Wake Detector
    12. 6.12 Analog-to-Digital Converter
    13. 6.13 Cell Balancing
    14. 6.14 Internal Temperature Sensor
    15. 6.15 Thermistor Measurement
    16. 6.16 Hardware Overtemperature Detector
    17. 6.17 Internal Oscillator
    18. 6.18 Charge and Discharge FET Drivers
    19. 6.19 Comparator-Based Protection Subsystem
    20. 6.20 Timing Requirements—I2C Interface, 100-kHz Mode
    21. 6.21 Timing Requirements—I2C Interface, 400-kHz Mode
    22. 6.22 Timing Diagram
    23. 6.23 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Device Configuration
      1. 7.3.1 Commands and Subcommands
      2. 7.3.2 Configuration Using OTP or Registers
      3. 7.3.3 Device Security
    4. 7.4 Device Hardware Features
      1. 7.4.1  Voltage ADC
      2. 7.4.2  Coulomb Counter and Digital Filters
      3. 7.4.3  Protection FET Drivers
      4. 7.4.4  Voltage References
      5. 7.4.5  Multiplexer
      6. 7.4.6  LDOs
      7. 7.4.7  Standalone Versus Host Interface
      8. 7.4.8  ALERT Pin Operation
      9. 7.4.9  Low Frequency Oscillator
      10. 7.4.10 I2C Serial Communications Interface
    5. 7.5 Measurement Subsystem
      1. 7.5.1 Voltage Measurement
        1. 7.5.1.1 Voltage ADC Scheduling
        2. 7.5.1.2 Unused VC Pins
        3. 7.5.1.3 General Purpose ADCIN Functionality
      2. 7.5.2 Current Measurement and Charge Integration
      3. 7.5.3 Internal Temperature Measurement
      4. 7.5.4 Thermistor Temperature Measurement
      5. 7.5.5 Factory Trim and Calibration
    6. 7.6 Protection Subsystem
      1. 7.6.1 Protections Overview
      2. 7.6.2 Primary Protections
      3. 7.6.3 CHG Detector
      4. 7.6.4 Cell Open-Wire Protection
      5. 7.6.5 Diagnostic Checks
    7. 7.7 Cell Balancing
    8. 7.8 Device Operational Modes
      1. 7.8.1 Overview of Operational Modes
      2. 7.8.2 NORMAL Mode
      3. 7.8.3 SLEEP Mode
      4. 7.8.4 DEEPSLEEP Mode
      5. 7.8.5 SHUTDOWN Mode
      6. 7.8.6 CONFIG_UPDATE Mode
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Performance Plot
      4. 8.2.4 Random Cell Connection Support
      5. 8.2.5 Startup Timing
      6. 8.2.6 FET Driver Turn-Off
      7. 8.2.7 Usage of Unused Pins
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

DEEPSLEEP Mode

The BQ76905 integrates a DEEPSLEEP mode, which is a low power mode that allows the REGOUT LDO to remain powered, but disables most other subsystems. In this mode, the protection FETs are all disabled, so no voltage is provided at the battery pack terminals. All protections are disabled, and all voltage, current, and temperature measurements are disabled.

DEEPSLEEP mode can be entered through a subcommand sent by the host. The device will exit DEEPSLEEP mode and return to NORMAL mode if directed through a subcommand or upon a rising edge on the TS or VC0 pins. In addition, if the BAT pin voltage falls below VPORA – VPORA_HYS while in DEEPSLEEP mode, the device will transition to SHUTDOWN mode.

When the device exits DEEPSLEEP mode and returns to NORMAL mode, it first completes a startup measurement loop and evaluates conditions relative to enabled protections, to ensure that conditions are acceptable to proceed. This may take approximately 8 ms plus the time for the measurement loop to complete.

The REGOUT LDO will maintain its power state when entering DEEPSLEEP mode. The LFO may be disabled during DEEPSLEEP mode based on setting. If disabled, it is wakened by I2C communications, which may result in a longer than normal clock stretch before the device responds to communications.