SLASFK2 December   2024 DAC121S101-SEP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 DAC Section
      2. 6.3.2 Resistor String
      3. 6.3.3 Output Amplifier
    4. 6.4 Device Functional Modes
      1. 6.4.1 Power-On Reset
      2. 6.4.2 Power-Down Modes
    5. 6.5 Programming
      1. 6.5.1 Serial Interface
      2. 6.5.2 Input Shift Register
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Bipolar Operation
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curve
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DGK|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

For best accuracy and minimum noise, the printed-circuit-board (PCB) that contains the DAC121S101-SEP must have separate analog and digital areas. The areas are defined by the locations of the analog and digital power planes. Both of these planes must be located in the same board layer. Use a single ground plane; a single ground plane is preferred if digital return current does not flow through the analog ground area. Frequently a single ground plane design uses a fencing technique to prevent the mixing of analog and digital ground current. Only use separate ground planes when the fencing technique is inadequate. Connect the separate ground planes in one place, preferably near the DAC121S101-SEP. Take special care to make sure digital signals with fast edge rates do not pass over split ground planes. The digital signals must always have a continuous return path below the traces.

Avoid crossover of analog and digital signals and keep the clock and data lines on the component side of the board. The clock and data lines must have controlled impedance.