SLASFK2 December   2024 DAC121S101-SEP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 DAC Section
      2. 6.3.2 Resistor String
      3. 6.3.3 Output Amplifier
    4. 6.4 Device Functional Modes
      1. 6.4.1 Power-On Reset
      2. 6.4.2 Power-Down Modes
    5. 6.5 Programming
      1. 6.5.1 Serial Interface
      2. 6.5.2 Input Shift Register
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Bipolar Operation
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curve
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DGK|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Serial Interface

The three-wire interface is compatible with SPI, QSPI and MICROWIRE, as well as most DSPs. See Figure 5-1 for information on a write sequence.

A write sequence begins by bringing the SYNC line low. After SYNC is low, the data on the DIN line is clocked into the 16-bit serial input register on the falling edges of SCLK. On the 16th falling clock edge, the last data bit is clocked in, and the programmed function (a change in the mode of operation, a change in the DAC register contents, or both) is executed. At this point, the SYNC line can be kept low or brought high. In either case, bring the SYNC line high for the minimum specified time before the next write sequence because a falling edge of SYNC can initiate the next write cycle.

The SYNC and DIN buffers draw more current when high; therefore, idle these buffers low between write sequences to minimize power consumption.