SNAS410F May   2008  – July 2016 DAC121S101QML-SP

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 DAC121S101QML-SP Electrical Characteristics DC Parameters
    6. 6.6 DAC121S101QML-SP Electrical Characteristics AC and Timing Characteristics
    7. 6.7 DAC121S101QML Electrical Characteristics Radiation Electrical Characteristics
    8. 6.8 DAC121S101QML-SP Electrical Characteristics Operating Life Test Delta Parameters TA at 25°C
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 DAC Section
      2. 7.3.2 Resistor String
      3. 7.3.3 Output Amplifier
      4. 7.3.4 Power-On Reset
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-Down Modes
    5. 7.5 Programming
      1. 7.5.1 Serial Interface
      2. 7.5.2 Input Shift Register
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Bipolar Operation
      2. 8.1.2 DSP and Microprocessor Interfacing
        1. 8.1.2.1 ADSP-2101/ADSP2103 Interfacing
        2. 8.1.2.2 80C51/80L51 Interface
        3. 8.1.2.3 68HC11 Interface
        4. 8.1.2.4 Microwire Interface
      3. 8.1.3 Radiation Environments
        1. 8.1.3.1 Total Ionizing Dose
          1. 8.1.3.1.1 DAC121S101WGRQV 5962R0722601VZA
          2. 8.1.3.1.2 DAC121S101WGRLV 5962R0722602VZA
        2. 8.1.3.2 Single Event Latch-Up and Functional Interrupt
        3. 8.1.3.3 Single Event Upset
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 Using References as Power Supplies
      1. 9.1.1 LM4050QML-SP
      2. 9.1.2 LP3985
      3. 9.1.3 LP2980-N
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
      2. 11.1.2 Device Nomenclature
        1. 11.1.2.1 Specification Definitions
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Engineering Samples

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

10 Layout

10.1 Layout Guidelines

For best accuracy and minimum noise, the printed-circuit board containing the DAC121S101QML-SP must have separate analog and digital areas. The areas are defined by the locations of the analog and digital power planes. Both of these planes should be located in the same board layer. There must be a single ground plane. A single ground plane is preferred if digital return current does not flow through the analog ground area. Frequently a single ground plane design will use a fencing technique to prevent the mixing of analog and digital ground current. Separate ground planes must only be used when the fencing technique is inadequate. The separate ground planes must be connected in one place, preferably near the DAC121S101QML-SP. Take special care to ensure that digital signals with fast edge rates do not pass over split ground planes. They must always have a continuous return path below their traces.

The DAC121S101QML-SP power supply must be bypassed with a 10-µF and a 0.1-µF capacitor as close as possible to the device with the 0.1 µF right at the device supply pin. The 10-µF capacitor must be a tantalum type and the 0.1-µF capacitor should be a low ESL, low ESR type. The power supply for the DAC121S101QML-SP must only be used for analog circuits.

Avoid crossover of analog and digital signals and keep the clock and data lines on the component side of the board. The clock and data lines must have controlled impedances.

10.2 Layout Example

DAC121S101QML-SP layout_example_snas410.gif
Note: N/C pins can be left floating or connected to ground
Figure 43. DAC121S101 Layout