SLASFB3 November   2023 DAC530A2W , DAC532A3W

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics: Voltage Output
    6. 5.6  Electrical Characteristics: Current Output
    7. 5.7  Electrical Characteristics: Comparator Mode
    8. 5.8  Electrical Characteristics: General
    9. 5.9  Timing Requirements: I2C Standard Mode
    10. 5.10 Timing Requirements: I2C Fast Mode
    11. 5.11 Timing Requirements: I2C Fast-Mode Plus
    12. 5.12 Timing Requirements: SPI Write Operation
    13. 5.13 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 0)
    14. 5.14 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 1)
    15. 5.15 Timing Requirements: GPIO
    16. 5.16 Timing Diagrams
    17. 5.17 Typical Characteristics: Voltage Output
    18. 5.18 Typical Characteristics: Current Output
    19. 5.19 Typical Characteristics: Comparator
    20. 5.20 Typical Characteristics: General
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Smart Digital-to-Analog Converter (DAC) Architecture
      2. 6.3.2 Digital Input/Output
      3. 6.3.3 Nonvolatile Memory (NVM)
    4. 6.4 Device Functional Modes
      1. 6.4.1 Voltage-Output Mode
        1. 6.4.1.1 Voltage Reference and DAC Transfer Function
          1. 6.4.1.1.1 Internal Reference
          2. 6.4.1.1.2 Power-Supply as Reference
      2. 6.4.2 Current-Output Mode
      3. 6.4.3 Comparator Mode
        1. 6.4.3.1 Programmable Hysteresis Comparator
        2. 6.4.3.2 Programmable Window Comparator
      4. 6.4.4 Fault-Dump Mode
      5. 6.4.5 Application-Specific Modes
        1. 6.4.5.1 Voltage Margining and Scaling
          1. 6.4.5.1.1 High-Impedance Output and PROTECT Input
          2. 6.4.5.1.2 Programmable Slew-Rate Control
        2. 6.4.5.2 Function Generation
          1. 6.4.5.2.1 Triangular Waveform Generation
          2. 6.4.5.2.2 Sawtooth Waveform Generation
          3. 6.4.5.2.3 Sine Waveform Generation
      6. 6.4.6 Device Reset and Fault Management
        1. 6.4.6.1 Power-On Reset (POR)
        2. 6.4.6.2 External Reset
        3. 6.4.6.3 Register-Map Lock
        4. 6.4.6.4 NVM Cyclic Redundancy Check (CRC)
          1. 6.4.6.4.1 NVM-CRC-FAIL-USER Bit
          2. 6.4.6.4.2 NVM-CRC-FAIL-INT Bit
      7. 6.4.7 General-Purpose Input/Output (GPIO) Modes
    5. 6.5 Programming
      1. 6.5.1 SPI Programming Mode
      2. 6.5.2 I2C Programming Mode
        1. 6.5.2.1 F/S Mode Protocol
        2. 6.5.2.2 I2C Update Sequence
          1. 6.5.2.2.1 Address Byte
          2. 6.5.2.2.2 Command Byte
        3. 6.5.2.3 I2C Read Sequence
  8. Register Map
    1. 7.1  NOP Register (address = 00h) [reset = 0000h]
    2. 7.2  DAC-0-MARGIN-HIGH Register (address = 0Dh) [reset = 0000h]
    3. 7.3  DAC-1-MARGIN-HIGH Register (address = 13h) [reset = 0000h]
    4. 7.4  DAC-2-MARGIN-HIGH Register (address = 01h) [reset = 0000h]
    5. 7.5  DAC-0-MARGIN-LOW Register (address = 0Eh) [reset = 0000h]
    6. 7.6  DAC-1-MARGIN-LOW Register (address = 14h) [reset = 0000h]
    7. 7.7  DAC-2-MARGIN-LOW Register (address = 02h) [reset = 0000h]
    8. 7.8  DAC-0-GAIN-CONFIG Register (address = 0Fh) [reset = 0000h]
    9. 7.9  DAC-1-GAIN-CMP-CONFIG Register (address = 15h) [reset = 0000h]
    10. 7.10 DAC-2-GAIN-CONFIG Register (address = 03h) [reset = 0000h]
    11. 7.11 DAC-1-CMP-MODE-CONFIG Register (address = 17h) [reset = 0000h]
    12. 7.12 DAC-0-FUNC-CONFIG Register (address = 12h) [reset = 0000h]
    13. 7.13 DAC-1-FUNC-CONFIG Register (address = 18h) [reset = 0000h]
    14. 7.14 DAC-2-FUNC-CONFIG Register (address = 06h) [reset = 0000h]
    15. 7.15 DAC-0-DATA Register (address = 1Bh) [reset = 0000h]
    16. 7.16 DAC-1-DATA Register (address = 1Ch) [reset = 0000h]
    17. 7.17 DAC-2-DATA Register (address = 19h) [reset = 0000h]
    18. 7.18 COMMON-CONFIG Register (address = 1Fh) [reset = 0FFFh]
    19. 7.19 COMMON-TRIGGER Register (address = 20h) [reset = 0000h]
    20. 7.20 COMMON-DAC-TRIG Register (address = 21h) [reset = 0000h]
    21. 7.21 GENERAL-STATUS Register (address = 22h) [reset = 20h, DEVICE-ID, VERSION-ID]
    22. 7.22 CMP-STATUS Register (address = 23h) [reset = 000Ch]
    23. 7.23 GPIO-CONFIG Register (address = 24h) [reset = 0000h]
    24. 7.24 DEVICE-MODE-CONFIG Register (address = 25h) [reset = 0000h]
    25. 7.25 INTERFACE-CONFIG Register (address = 26h) [reset = 0000h]
    26. 7.26 SRAM-CONFIG Register (address = 2Bh) [reset = 0000h]
    27. 7.27 SRAM-DATA Register (address = 2Ch) [reset = 0000h]
    28. 7.28 BRDCAST-DATA Register (address = 50h) [reset = 0000h]
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • YBH|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

  • The full-scale IDAC output range is 350 mA. The nominal IDAC output for this application is 120 mA. The IDAC code required to set the IDAC output to 120 mA is calculated by Equation 8.
Equation 8. DAC_2_DATA=120 mA23×0.5241×210=352 d
  • The IDAC uses the internal reference. Enable the internal reference in the COMMON-CONFIG register before enabling the IDAC output.
  • The power dissipation of the IDAC channel is a function of the PVDD supply voltage, the current output, and the voltage of the IDAC pin (VIDAC). The headroom voltage (VHEADROOM) is calculated as the difference between PVDD and VIDAC. Minimize VHEADROOM to reduce the power dissipation of the device while also meeting the minimum VHEADROOM requirement. The IDAC output cannot source the full-scale current output if VHEADROOM is lower than the specified voltage. Figure 8-2 shows the output current directions and the key voltages that impact power dissipation. The IDAC output contributes to power dissipation proportionally to the output current multiplied by the VHEADROOM voltage.
GUID-20231026-SS0I-Q7RZ-GWFW-DCNFLDBCRXHH-low.svgFigure 8-2 IDAC Power Dissipation
  • The VOUT1 channel of the DAC53xAxW can be configured as a programmable comparator. In the DAC-1-GAIN-CMP-CONFIG register:
    • Enable the channel for comparator mode,
    • Enable the comparator output,
    • Disable Hi-Z input mode, and
    • Set the reference for the comparator.
    This application example uses the 3.3-V VDD as the reference with a 1× gain. The programmable threshold (VTHRESH) is set in the DAC-1-DATA register for the respective channel. Equation 9 calculates the DAC code for a 1-V threshold.
Equation 9. DAC_DATA=1 V3.3 V×210=310 d
  • Configure the function of the GPIO/SDO pin in the GPIO-CONFIG register. The GPI-EN bit enables the GPIO/SDO pin as an input. The GPI-CH-SEL field selects which channels are controlled by the GPI. The GPI-CONFIG field selects the GPI function. Table 6-8 defines the functions for the GPI-CONFIG field. This application uses the GPIO/SDO pin to set the IDAC output to margin high or margin low. Set both the DAC-2-MARGIN-HIGH and DAC-2-MARGIN-LOW registers to zero-scale to clear the outputs to zero when the GPIO/SDO pin is toggled. A falling edge on the GPIO/SDO pin clears the IDAC to zero-scale. After the GPIO/SDO pin returns high, set the IDAC output to the desired output code using the DAC-2-DATA register.
  • In this application circuit, the comparator output is connected to the GPIO input to clear the IDAC output zero-scale. When VIDAC is less than VTHRESH, the comparator output is high and the IDAC output remains at the programmed code in the DAC-2-DATA register. When VIDAC is greater than VTHRESH, the comparator output is set low and the IDAC output is cleared to zero-scale. This is the default configuration of the comparator. To reverse the comparator output polarity, set the CMP-1-INV-EN bit in the DAC-1-GAIN-CMP-CONFIG register to 1.

The pseudocode for a camera auto-focus control application is as follows:

//SYNTAX: WRITE <REGISTER NAME (Hex code)>, <MSB DATA>, <LSB DATA>
//Write DAC code for nominal IDAC output
//The 10-bit hex code for 120 mA is 0x160. With 16-bit left alignment, this becomes 0x5800
WRITE DAC-2-DATA(0x19), 0x58, 0x00
//Set VOUT1 gain setting to 1x VDD (3.3 V), enable comparator mode, enable comparator output, disable hi-z input
WRITE DAC-1-GAIN-CMP-CONFIG(0x15), 0x04, 0x0D
//For a 3.3-V output range, the 10-bit hex code for 1 V is 0x136. With 16-bit left alignment, this becomes 0x4D80
WRITE DAC-1-DATA(0x1C), 0x4D, 0x80
//Power-up output on IDAC and VDAC channels, enables internal reference 
WRITE COMMON-CONFIG(0x1F), 0x13, 0xDF 
//Configure GPI for margin high, margin low trigger for IDAC channel
WRITE GPIO-CONFIG(0x24), 0x00, 0x35 
//Save settings to NVM 
WRITE COMMON-TRIGGER(0x20), 0x00, 0x02