DLPS272A May   2024  – December 2024 DLP472NE

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  Storage Conditions
    3. 5.3  ESD Ratings
    4. 5.4  Recommended Operating Conditions
    5.     11
    6.     12
    7. 5.5  Thermal Information
    8. 5.6  Electrical Characteristics
    9. 5.7  Switching Characteristics
    10. 5.8  Timing Requirements
    11. 5.9  System Mounting Interface Loads
    12. 5.10 Micromirror Array Physical Characteristics
    13. 5.11 Micromirror Array Optical Characteristics
    14. 5.12 Window Characteristics
    15. 5.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power Interface
      2. 6.3.2 Timing
    4. 6.4 Device Functional Modes
    5. 6.5 Optical Interface and System Image Quality Considerations
      1. 6.5.1 Numerical Aperture and Stray Light Control
      2. 6.5.2 Pupil Match
      3. 6.5.3 Illumination Overfill
    6. 6.6 Micromirror Array Temperature Calculation
    7. 6.7 Micromirror Power Density Calculation
    8. 6.8 Window Aperture Illumination Overfill Calculation
    9. 6.9 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 6.9.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 6.9.2 Landed Duty Cycle and Useful Life of the DMD
      3. 6.9.3 Landed Duty Cycle and Operational DMD Temperature
      4. 6.9.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curve
    3. 7.3 Temperature Sensor Diode
  9. Power Supply Recommendations
    1. 8.1 DMD Power Supply Power-Up Procedure
    2. 8.2 DMD Power Supply Power-Down Procedure
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Impedance Requirements
    3. 9.3 Layers
    4. 9.4 Trace Width, Spacing
    5. 9.5 Power
    6. 9.6 Trace Length Matching Recommendations
  11. 10Device and Documentation Support
    1. 10.1 Third-Party Products Disclaimer
    2. 10.2 Device Support
      1. 10.2.1 Device Nomenclature
      2. 10.2.2 Device Markings
    3. 10.3 Documentation Support
      1. 10.3.1 Related Documentation
    4. 10.4 Receiving Notification of Documentation Updates
    5. 10.5 Support Resources
    6. 10.6 Trademarks
    7. 10.7 Electrostatic Discharge Caution
    8. 10.8 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power

TI strongly discourages signal routing on power planes or planes adjacent to power planes. If signals must be routed on layers adjacent to power planes, they must not cross splits in power planes to prevent EMI and preserve signal integrity.

Connect all internal digital ground (GND) planes in as many places as possible. Connect all internal ground planes with a minimum distance between connections of 0.5”. Extra vias may not required if there are sufficient ground vias due to normal ground connections of devices.

Connect the power and ground pins of each component to the power and ground planes with at least one via for each pin. Minimize trace lengths for component power and ground pins. (ideally, less than 0.100”).

Ground plane slots are strongly discouraged.