DLPS240A June   2024  – August 2024 DLPA3085

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 SPI Timing Parameters
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Description
    3. 6.3 Feature Description
      1. 6.3.1 Supply and Monitoring
        1. 6.3.1.1 Supply
        2. 6.3.1.2 Monitoring
          1. 6.3.1.2.1 Block Faults
          2. 6.3.1.2.2 Auto LED Turn-Off Functionality
          3. 6.3.1.2.3 Thermal Protection
      2. 6.3.2 Illumination
        1. 6.3.2.1 Programmable Gain Block
        2. 6.3.2.2 LDO Illumination
        3. 6.3.2.3 Illumination Driver A
        4. 6.3.2.4 RGB Strobe Decoder
          1. 6.3.2.4.1 Break Before Make (BBM)
          2. 6.3.2.4.2 Openloop Voltage
          3. 6.3.2.4.3 Transient Current Limit
        5. 6.3.2.5 Illumination Monitoring
          1. 6.3.2.5.1 Power Good
          2. 6.3.2.5.2 Ratio Metric Overvoltage Protection
        6. 6.3.2.6 Illumination Driver Plus Power FETs Efficiency
      3. 6.3.3 External Power FET Selection
        1. 6.3.3.1 Threshold Voltage
        2. 6.3.3.2 Gate Charge and Gate Timing
        3. 6.3.3.3 RDS(ON)
      4. 6.3.4 DMD Supplies
        1. 6.3.4.1 LDO DMD
        2. 6.3.4.2 DMD HV Regulator
        3. 6.3.4.3 DMD/DLPC Buck Converters
        4. 6.3.4.4 DMD Monitoring
          1. 6.3.4.4.1 Power Good
          2. 6.3.4.4.2 Overvoltage Fault
      5. 6.3.5 Buck Converters
        1. 6.3.5.1 LDO Bucks
        2. 6.3.5.2 General Purpose Buck Converters
        3. 6.3.5.3 Buck Converter Monitoring
          1. 6.3.5.3.1 Power Good
          2. 6.3.5.3.2 Overvoltage Fault
        4. 6.3.5.4 Buck Converter Efficiency
      6. 6.3.6 Auxiliary LDOs
      7. 6.3.7 Measurement System
    4. 6.4 Device Functional Modes
    5. 6.5 Programming
      1. 6.5.1 SPI
      2. 6.5.2 Interrupt
      3. 6.5.3 Fast-Shutdown in Case of Fault
    6. 6.6 Register Maps
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Component Selection for General-Purpose Buck Converter
      3. 7.2.3 Application Curve
    3. 7.3 System Example With DLPA3085 Internal Block Diagram
  9. Power Supply Recommendations
    1. 8.1 Power-Up and Power-Down Timing
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 SPI Connections
      2. 9.1.2 RLIM Routing
      3. 9.1.3 LED Connection
    2. 9.2 Layout Example
    3. 9.3 Thermal Considerations
  11. 10Device and Documentation Support
    1. 10.1 Third-Party Products Disclaimer
    2. 10.2 Device Support
      1. 10.2.1 Device Nomenclature
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Auto LED Turn-Off Functionality

The DLPA3085 can be supplied with an adapter. The DLPA3085 uses several warning and detection levels to prevent system damage when the supply voltage is below the predefined level or an interruption occurs.

For example, interruption of the supply voltage occurs when the adapter is switched to another main outlet. A change of supply voltage from 20V to 8V, and thus the OVP level (which is ratio metric, see Section 6.3.2.5.2) could become lower than VLED. An OVP fault is triggered and the system switches off.

The ILLUM_LED_AUTO_OFF_EN (0x01, bit 2) function can be used to prevent the system from turning off in these circumstances. This function disables the LEDs when the supply voltage drops below LED auto-off level. When the ILLUM_LED_AUTO_OFF_EN (0x01, bit 2) function is enabled, once a supply voltage drop is detected to below LED auto-off level, the LEDs switch off and the system starts sending lower current levels to have a lower VLED. After start using lower currents, the LEDs can be switched on again by disabling ILLUM_LED_AUTO_OFF_EN (0x01, bit 2) function. As a result the system can continue working at the lower supply voltage using a lower intensity. Once the mains adapter is plugged in again, the ILLUM_LED_AUTO_OFF_EN (0x01, bit 2) function can be enabled again. The LED currents can be restored to their original levels.