SLOS861C March   2015  – January 2023 DRV2700

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Boost Converter and Control Loop
      2. 7.3.2 High-Voltage Amplifier
      3. 7.3.3 Fast Start-Up (Enable Pin)
      4. 7.3.4 Gain Control
      5. 7.3.5 Adjustable Boost Voltage
      6. 7.3.6 Adjustable Boost Current-Limit
      7. 7.3.7 Internal Charge Pump
      8. 7.3.8 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Boost + Amplifier Mode
      2. 7.4.2 Flyback Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 AC-Coupled DAC Input Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Piezo Load Selection
          2. 8.2.1.2.2  Programming The Boost Voltage
          3. 8.2.1.2.3  Inductor and Transformer Selection
          4. 8.2.1.2.4  Programing the Boost and Flyback Current-Limit
          5. 8.2.1.2.5  Boost Capacitor Selection
          6. 8.2.1.2.6  Pulldown FET and Resistors
          7. 8.2.1.2.7  Low-Voltage Operation
          8. 8.2.1.2.8  Current Consumption Calculation
          9. 8.2.1.2.9  Input Filter Considerations
          10. 8.2.1.2.10 Output Limiting Factors
          11. 8.2.1.2.11 Startup and Shutdown Sequencing
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Filtered AC Coupled Single-Ended PWM Input Application
      3. 8.2.3 DC-Coupled DAC Input Application
      4. 8.2.4 DC-Coupled Reference Input Application
      5. 8.2.5 Flyback Circuit
    3. 8.3 System Example
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Boost + Amplifier Configuration Layout Considerations
      2. 10.1.2 Flyback Configuration Layout Considerations
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Trademarks
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGP|20
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Input Filter Considerations

Depending on the quality of the source signal provided to the DRV2700 device, an input filter may be required. Some key factors to consider are whether the source is generated from a DAC or from PWM, and the out-of-band content generated. If proper anti-image rejection filtering is used to eliminate image components, the filter can possibly be eliminated depending on the magnitude of the out-of-band components. If PWM is used, at least a first-order RC filter is required. The PWM sample rate must be greater than 30 kHz to keep the PWM ripple from reaching the piezo element and dissipating unnecessary power. A second-order RC filter may be desirable to further eliminate out-of-band signal content to further drive down power dissipation and eliminate audible noise.

For this design example, to ensure higher harmonics of the input signal do not propagate into the device, use a low pass filter with a 3-dB point of 2 kHz. Refer to DRV2700EVM High Voltage Piezo Driver Evaluation Kit, SLOU403, to build this input filter network.