SBAS639D October   2017  – June 2024 DRV5055-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Magnetic Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Magnetic Flux Direction
      2. 6.3.2 Magnetic Response
      3. 6.3.3 Sensitivity Linearity
      4. 6.3.4 Ratiometric Architecture
      5. 6.3.5 Operating VCC Ranges
      6. 6.3.6 Sensitivity Temperature Compensation for Magnets
      7. 6.3.7 Power-On Time
      8. 6.3.8 Hall Element Location
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Selecting the Sensitivity Option
      2. 7.1.2 Temperature Compensation for Magnets
      3. 7.1.3 Adding a Low-Pass Filter
      4. 7.1.4 Designing for Wire Break Detection
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curve
    3. 7.3 Best Design Practices
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Examples
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Ratiometric Architecture

The DRV5055-Q1 has a ratiometric analog architecture that scales the quiescent voltage and sensitivity linearly with the power-supply voltage. For example, the quiescent voltage and sensitivity are 5% higher when VCC = 5.25 V compared to VCC = 5 V. This behavior enables external ADCs to digitize a consistent value regardless of the power-supply voltage tolerance, when the ADC uses VCC as its reference.

Equation 3 calculates the sensitivity ratiometry error:

Equation 3. DRV5055-Q1

where

  • S(VCC) is the sensitivity at the current VCC voltage
  • S(5V) or S(3.3V) is the sensitivity when VCC = 5 V or 3.3 V
  • VCC is the current VCC voltage

Equation 4 calculates the quiescent voltage ratiometry error:

Equation 4. DRV5055-Q1

where

  • VQ(VCC) is the quiescent voltage at the current VCC voltage
  • VQ(5V) or VQ(3.3V) is the quiescent voltage when VCC = 5 V or 3.3 V
  • VCC is the current VCC voltage