SLVSGZ1B May   2024  – December 2024 DRV8161 , DRV8162

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specification
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information 1pkg
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Diagrams
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Gate Drivers
        1. 7.3.1.1 PWM Control Modes
          1. 7.3.1.1.1 2-pin PWM Mode
          2. 7.3.1.1.2 1-pin PWM Mode
          3. 7.3.1.1.3 Independent PWM Mode
        2. 7.3.1.2 Gate Drive Architecture
          1. 7.3.1.2.1 Tickle Charge Pump (TCP)
          2. 7.3.1.2.2 Deadtime and Cross-Conduction Prevention (Shoot through protection)
      2. 7.3.2 Pin Diagrams
        1. 7.3.2.1 Four Level Input Pin (CSAGAIN)
        2. 7.3.2.2 Digital output nFAULT (DRV8162, DRV8162L)
        3. 7.3.2.3 Digital InOut nFAULT/nDRVOFF (DRV8161)
        4. 7.3.2.4 Multi-level inputs (IDRIVE1 and IDRIVE2)
        5. 7.3.2.5 Multi-level digital input (VDSLVL)
        6. 7.3.2.6 Multi-level digital input DT/MODE
      3. 7.3.3 Low-Side Current Sense Amplifiers
        1. 7.3.3.1 Bidirectional Current Sense Operation
      4. 7.3.4 Gate Driver Shutdown Sequence (nDRVOFF)
        1. 7.3.4.1 nDRVOFF Diagnostic
      5. 7.3.5 Gate Driver Protective Circuits
        1. 7.3.5.1 GVDD Undervoltage Lockout (GVDD_UV)
        2. 7.3.5.2 MOSFET VDS Overcurrent Protection (VDS_OCP)
        3. 7.3.5.3 Thermal Shutdown (OTSD)
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Typical Application with DRV8161
      2. 8.2.2 Typical Application with DRV8162 and DRV8162L
      3. 8.2.3 External Components
  10. Layout
    1. 9.1 Layout Guidelines
  11. 10Device and Documentation Support
    1. 10.1 Device Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Community Resources
    5. 10.5 Trademarks
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Gate Drivers

The DRV816x family of devices integrates high-side and low-side FET gate drivers capable of driving N-channel power MOSFETs in half-bridge configuration. A bootstrap gate drive architecture generates the high-side gate driver voltage during PWM switching. The GVDD pin supplies both high-side and low-side gate drivers and sets the VGS voltage for the FETs.

The DRV816x devices support half-bridge power stage architecture. In addition to the regular 2-pin PWM, 1-pin PWM control interface, the device offers an independent PWM mode by disabling shoot through protection and allowing the high-side and low-side FETs to be controlled independently. Independent FET control is useful for driving solenoids and switched reluctance motors. The DRV8162 and DRV8162L have separate supply pins (GVDD and GVDD_LS) for high-side and low-side FET gate drive. This allows the system to support safe torque off (STO) function by adding external power switches to the gate drive supply pins.