SLVSGZ1B May   2024  – December 2024 DRV8161 , DRV8162

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specification
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information 1pkg
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Diagrams
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Gate Drivers
        1. 7.3.1.1 PWM Control Modes
          1. 7.3.1.1.1 2-pin PWM Mode
          2. 7.3.1.1.2 1-pin PWM Mode
          3. 7.3.1.1.3 Independent PWM Mode
        2. 7.3.1.2 Gate Drive Architecture
          1. 7.3.1.2.1 Tickle Charge Pump (TCP)
          2. 7.3.1.2.2 Deadtime and Cross-Conduction Prevention (Shoot through protection)
      2. 7.3.2 Pin Diagrams
        1. 7.3.2.1 Four Level Input Pin (CSAGAIN)
        2. 7.3.2.2 Digital output nFAULT (DRV8162, DRV8162L)
        3. 7.3.2.3 Digital InOut nFAULT/nDRVOFF (DRV8161)
        4. 7.3.2.4 Multi-level inputs (IDRIVE1 and IDRIVE2)
        5. 7.3.2.5 Multi-level digital input (VDSLVL)
        6. 7.3.2.6 Multi-level digital input DT/MODE
      3. 7.3.3 Low-Side Current Sense Amplifiers
        1. 7.3.3.1 Bidirectional Current Sense Operation
      4. 7.3.4 Gate Driver Shutdown Sequence (nDRVOFF)
        1. 7.3.4.1 nDRVOFF Diagnostic
      5. 7.3.5 Gate Driver Protective Circuits
        1. 7.3.5.1 GVDD Undervoltage Lockout (GVDD_UV)
        2. 7.3.5.2 MOSFET VDS Overcurrent Protection (VDS_OCP)
        3. 7.3.5.3 Thermal Shutdown (OTSD)
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Typical Application with DRV8161
      2. 8.2.2 Typical Application with DRV8162 and DRV8162L
      3. 8.2.3 External Components
  10. Layout
    1. 9.1 Layout Guidelines
  11. 10Device and Documentation Support
    1. 10.1 Device Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Community Resources
    5. 10.5 Trademarks
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

MOSFET VDS Overcurrent Protection (VDS_OCP)

The DRV816x devices have adjustable VDS voltage monitors to detect overcurrent or short-circuit conditions on the external power MOSFETs. A MOSFET overcurrent event is sensed by monitoring the VDS voltage drop across the external MOSFET RDS(on). The high-side VDS monitors measure between the VDRAIN and SH pins. The low-side VDS monitors measure between the SH and SL pins. If the voltage across external MOSFET exceeds the VVDSLVL threshold for longer than the tDS_DG deglitch time, a VDS_OCP event is recognized. After detecting the VDS overcurrent event, all of the gate driver outputs are driven low to disable the external MOSFETs and nFAULT pin is driven low. The VDS threshold can be set between 0.1 V to 2.0 V by VDSLVL pin. The VDS deglitch time is fixed at tDS_DG. The VDS OCP can be disabled by leaving VDSLVL pin open. After the over current condition is cleared, the fault state remains latched and can be cleared when INH(IN) and INL(EN) stay low for tCLRFLT time.

DRV8161 DRV8162 DRV816x MOSFET VDS Overcurrent protection Figure 7-19 DRV816x MOSFET VDS Overcurrent protection