SLOS846C September   2013  – December 2016 DRV8303

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Current Shunt Amplifier Characteristics
    7. 6.7 SPI Characteristics (Slave Mode Only)
    8. 6.8 Gate Timing and Protection Switching Characteristics
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Three-Phase Gate Driver
      2. 7.3.2 Current Shunt Amplifiers
      3. 7.3.3 Protection Features
        1. 7.3.3.1 Power Stage Protection
        2. 7.3.3.2 Overcurrent Protection (OCP) and Reporting
        3. 7.3.3.3 Undervoltage Protection (UVLO)
        4. 7.3.3.4 Overvoltage Protection (GVDD_OV)
        5. 7.3.3.5 Overtemperature Protection
        6. 7.3.3.6 Fault and Protection Handling
      4. 7.3.4 Start-Up and Shutdown Sequence Control
    4. 7.4 Device Functional Modes
      1. 7.4.1 EN_GATE
      2. 7.4.2 DTC
      3. 7.4.3 VDD_SPI
      4. 7.4.4 DC_CAL
    5. 7.5 Programming
      1. 7.5.1 SPI Communication
        1. 7.5.1.1 SPI
        2. 7.5.1.2 SPI Format
    6. 7.6 Register Maps
      1. 7.6.1 Read / Write Bit
      2. 7.6.2 Address Bits
      3. 7.6.3 SPI Data Bits
        1. 7.6.3.1 Status Registers
        2. 7.6.3.2 Control Registers
        3. 7.6.3.3 Overcurrent Adjustment
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Gate Driver Power-Up Sequencing Errata
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Gate Drive Average Current Load
        2. 8.2.2.2 Overcurrent Protection Setup
        3. 8.2.2.3 Sense Amplifier Setup
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VPVDD Supply voltage Relative to PGND –0.3 65 V
Maximum supply-voltage ramp rate Voltage rising up to PVDDMAX 1 V/µs
VPGND Maximum voltage between PGND and GND –0.3 0.3 V
VOPA_IN Voltage for SPx and SNx pins –0.6 0.6 V
VLOGIC Input voltage for logic and digital pins (INH_A, INL_A, INH_B, INL_B, INH_C, INL_C, EN_GATE, SCLK, SDI, SCS, DC_CAL) –0.3 7 V
VGVDD Maximum voltage for GVDD pin 13.2 V
VAVDD Maximum voltage for AVDD pin 8 V
VDVDD Maximum voltage for DVDD pin 3.6 V
VVDD_SPI Maximum voltage for VDD_SPI pin 7 V
VSDO Maximum voltage for SDO pin VDD_SPI +0.3 V
VREF Maximum reference voltage for current amplifier 7 V
VBST_MAX Maximum voltage for BST_X Pin –0.3 80 V
VBST_DIFF Maximum voltage difference for (BST_X-SH_X) and (BST_X-GH_X) –0.3 14.5 V
VGH_MAX Maximum voltage for GH_X pin –0.3 80 V
VGH_DIF Maximum voltage difference for (GH_X-SH_X) –0.3 14.5 V
VGL_MAX Maximum voltage for GL_X pin –0.3 13.2 V
VGL_DIF Maximum voltage difference for (GL_X-SL_X) –0.3 13.2 V
VSH_MAX Maximum voltage for SH_X pin –2 PVDD + 2 V
VSL_MAX Maximum voltage for SL_X pin –0.6 0.6 V
IIN_MAX Maximum current for all digital and analog inputs (INH_A, INL_A, INH_B, INL_B, INH_C, INL_C, SCLK, SCS, SDI, EN_GATE, DC_CAL, DTC) –1 1 mA
ISINK_MAX Maximum sinking current for open-drain pins (nFAULT and nOCTW pins) 7 mA
IREF Maximum current for REF pin 100 µA
Tstg Storage temperature –55 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted).
MIN NOM MAX UNIT
VPVDD DC supply voltage PVDD for normal operation Relative to PGND 6 60 V
IDIN_EN Input current of digital pins when EN_GATE is high 100 µA
IDIN_DIS Input current of digital pins when EN_GATE is low 1 µA
CO_OPA Maximum output capacitance on outputs of shunt amplifier 20 pF
RDTC Dead time control resistor. Time range is 50 ns (–GND) to 500 ns (150 kΩ) with a linear approximation. 0 150
IFAULT nFAULT pin sink current. Open drain V = 0.4 V 2 mA
IOCTW nOCTW pin sink current. Open drain V = 0.4 V 2 mA
VREF External voltage reference voltage for current shunt amplifiers 2 6 V
fgate Operating switching frequency of gate driver Qg(TOT) = 25 nC or total 30-mA gate drive average current 200 kHz
Igate Total average gate drive current 30 mA
TA Ambient temperature –40 125 °C

Thermal Information

THERMAL METRIC(1) DRV8303 UNIT
DCA (TSSOP)
48 PINS
RθJA Junction-to-ambient thermal resistance 30.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 33.5 °C/W
RθJB Junction-to-board thermal resistance 17.5 °C/W
ψJT Junction-to-top characterization parameter 0.9 °C/W
ψJB Junction-to-board characterization parameter 7.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.9 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

PVDD = 6 V to 60 V, TC = 25°C, unless specified under test condition
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT PINS: INH_X, INL_X, SCS, SDI, SCLK, EN_GATE, DC_CAL
VIH High input threshold 2 V
VIL Low input threshold 0.8 V
RPULL_DOWN – INTERNAL PULLDOWN RESISTOR FOR GATE DRIVER INPUTS
REN_GATE Internal pulldown resistor for EN_GATE 100
RINH_X Internal pulldown resistor for high side PWMs (INH_A, INH_B, and INH_C) EN_GATE high 100
RINH_X Internal pulldown resistor for low side PWMs (INL_A, INL_B, and INL_C) EN_GATE high 100
RSCS Internal pulldown resistor for nSCS EN_GATE high 100
RSDI Internal pulldown resistor for SDI EN_GATE high 100
RDC_CAL Internal pulldown resistor for DC_CAL EN_GATE high 100
RSCLK Internal pulldown resistor for SCLK EN_GATE high 100
OUTPUT PINS: nFAULT AND nOCTW
VOL Low-output threshold IO = 2 mA 0.4 V
VOH High-output threshold External 47-kΩ pullup resistor connected to 3-5.5 V 2.4 V
IOH Leakage current on open drain pins when logic high (nFAULT and nOCTW) 1 µA
GATE DRIVE OUTPUT: GH_A, GH_B, GH_C, GL_A, GL_B, GL_C
VGX_NORM Gate driver Vgs voltage PVDD = 8V to 60 V, Igate = 30 mA,
CCP = 22 nF
9.5 11.5 V
PVDD = 8 V to 60 V, Igate = 30 mA,
CCP = 220 nF
9.5 11.5
VGX_MIN Gate driver Vgs voltage PVDD = 6 V to 8 V, Igate = 15 mA,
CCP = 22 nF
8.8 V
PVDD = 6 V to 8 V, Igate = 30 mA,
CCP = 220 nF
8.3
Ioso1 Maximum source current setting 1, peak Vgs of FET equals to 2 V. REG 0x02 1.7 A
Iosi1 Maximum sink current setting 1, peak Vgs of FET equals to 8 V. REG 0x02 2.3 A
Ioso2 Source current setting 2, peak Vgs of FET equals to 2 V. REG 0x02 0.7 A
Iosi2 Sink current setting 2, peak Vgs of FET equals to 8 V. REG 0x02 1 A
Ioso3 Source current setting 3, peak Vgs of FET equals to 2 V. REG 0x02 0.25 A
Iosi3 Sink current setting 3, peak Vgs of FET equals to 8 V. REG 0x02 0.5 A
Rgate_off Gate output impedance during standby mode when EN_GATE low (pins GH_x, GL_x) 1.6 2.4
SUPPLY CURRENTS
IPVDD_STB PVDD supply current, standby EN_GATE is low. PVDD = 8 V 20 50 µA
IPVDD_OP PVDD supply current, operating EN_GATE is high, no load on gate drive output, switching at 10 kHz,
100-nC gate charge
15 mA
IPVDD_HIZ PVDD supply current, Hi-Z EN_GATE is high, gate not switching 2 5 10 mA
INTERNAL REGULATOR VOLTAGE
AVDD AVDD voltage PVDD = 8 V to 60 V 6 6.5 7 V
PVDD = 6 V to 8 V 5.5 6
DVDD DVDD voltage 3 3.3 3.6 V
VOLTAGE PROTECTION
VPVDD_UV Undervoltage protection limit, PVDD 6 V
VGVDD_UV Undervoltage protection limit, GVDD 7.5 V
VGVDD_OV Overvoltage protection limit, GVDD 16 V
CURRENT PROTECTION, (VDS SENSING)
VDS_OC Drain-source voltage protection limit PVDD = 8 V to 60 V 0.125 2.4 V
PVDD = 6 V to 8 V(1) 0.125 1.491
TOC OC sensing response time 1.5 µs
TOC_PULSE nOCTW pin reporting pulse stretch length for OC event 64 µs
TEMPERATURE PROTECTION
OTW_CLR Junction temperature for resetting over temperature warning 115 °C
OTW_SET/
OTSD_CLR
Junction temperature for over temperature warning and resetting over temperature shut down 130 °C
OTSD_SET Junction temperature for over temperature shut down 150 °C
Reduced AVDD voltage range results in limitations on settings for overcurrent protection. See Table 12.

Current Shunt Amplifier Characteristics

Over operating free-air temperature range.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
G1 Gain option 1 Tc = –40°C to 125°C 9.5 10 10.5 V/V
G2 Gain option 2 Tc = –40°C to 125°C 18 20 21 V/V
G3 Gain Option 3 Tc = –40°C to 125°C 38 40 42 V/V
G4 Gain Option 4 Tc = –40°C to 125°C 75 80 85 V/V
Tsettling Settling time to 1% Tc = 0 to 60°C, G = 10, Vstep = 2 V 300 ns
Tsettling Settling time to 1% Tc = 0 to 60°C, G = 20, Vstep = 2 V 600 ns
Tsettling Settling time to 1% Tc = 0 to 60°C, G = 40, Vstep = 2 V 1.2 µs
Tsettling Settling time to 1% Tc = 0 to 60°C, G = 80, Vstep = 2 V 2.4 µs
Vswing Output swing linear range 0.3 5.7 V
Slew Rate G = 10 10 V/µs
DC_offset Offset error RTI G = 10 with input shorted 4 mV
Drift_offset Offset drift RTI 10 µV/C
Ibias Input bias current 100 µA
Vin_com Common input mode range –0.15 0.15 V
Vin_dif Differential input range –0.3 0.3 V
Vo_bias Output bias With zero input current, VREF up to
6 V
–0.5% 0.5×Vref 0.5% V
CMRR_OV Overall CMRR with gain resistor mismatch CMRR at DC, gain = 10 70 85 dB

SPI Characteristics (Slave Mode Only)

MIN NOM MAX UNIT
tSPI_READY SPI ready after EN_GATE transitions to HIGH PVDD > 6 V 5 10 ms
tCLK Minimum SPI clock period 100 ns
tCLKH Clock high time See Figure 1 40 ns
tCLKL Clock low time See Figure 1 40 ns
tSU_SDI SDI input data setup time 20 ns
tHD_SDI SDI input data hold time 30 ns
tD_SDO SDO output data delay time, CLK high to SDO valid CL = 20 pF 20 ns
tHD_SDO SDO output data hold time See Figure 1 40 ns
tSU_SCS SCS setup time See Figure 1 50 ns
tHD_SCS SCS hold time 50 ns
tHI_SCS SCS minimum high time before SCS active low 40 ns
tACC SCS access time, SCS low to SDO out of high impedance 10 ns
tDIS SCS disable time, SCS high to SDO high impedance 10 ns

Gate Timing and Protection Switching Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TIMING, OUTPUT PINS
tpd,If-O Positive input falling to GH_x falling CL = 1 nF, 50% to 50% 45 ns
tpd,Ir-O Positive input rising to GL_x falling CL = 1 nF, 50% to 50% 45 ns
td_min Minimum dead time after hand shaking(1) 50 ns
tdtp Dead time With RDTC set to different values 50 500 ns
tGDr Rise time, gate drive output CL = 1 nF, 10% to 90% 25 ns
tGDF Fall time, gate drive output CL = 1 nF, 90% to 10% 25 ns
tON_MIN Minimum on pulse Not including handshake communication. Hi-Z to on state, output of gate driver 50 ns
tpd_match Propagation delay matching between high side and low side 5 ns
tdt_match Deadtime matching 5 ns
TIMING, PROTECTION AND CONTROL
tpd,R_GATE-OP Start-up time, from EN_GATE active high to device ready for normal operation PVDD is up before start up, all charge pump caps and regulator capacitors as in the Recommended Operating Conditions 5 10 ms
tpd,R_GATE-Quick If EN_GATE goes from high to low and back to high state within quick reset time, it will only reset all faults and gate driver without powering down charge pump, current amp, and related internal voltage regulators. Maximum low pulse time 10 µs
tpd,E-L Delay, error event to all gates low 200 ns
tpd,E-FAULT Delay, error event to FAULT low 200 ns
Dead time programming definition: Adjustable delay from GH_x falling edge to GL_X rising edge, and GL_X falling edge to GH_X rising edge. This is a minimum dead-time insertion. It is not added to the value set by the microcontroller externally.
DRV8303 SPI_def_tim_los719.gif Figure 1. SPI Slave Mode Timing Definition
DRV8303 SPI_tim_dia_los719.gif Figure 2. SPI Slave Mode Timing Diagram

Typical Characteristics

DRV8303 C001_SLOS719.png
PVDD = 8 V EN_GATE = LOW
Figure 3. IPVDD1 vs Temperature
DRV8303 C003_SLOS719.png
PVDD = 60 V EN_GATE = HIGH
Figure 5. GVDD vs Temperature
DRV8303 C002_SLOS719.png
PVDD = 8 V EN_GATE = HIGH
Figure 4. GVDD vs Temperature