SLVSCK2A April   2014  – February 2016 DRV8307

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configurations and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Hall Comparators
      2. 7.3.2  HALLOUT Output
      3. 7.3.3  Enable, Reset, and Clock Generation
      4. 7.3.4  Commutation
        1. 7.3.4.1 120° 3-Hall Commutation
        2. 7.3.4.2 120° Single-Hall Commutation
      5. 7.3.5  Braking
      6. 7.3.6  Output Pre-Drivers
      7. 7.3.7  Current Limit
      8. 7.3.8  Charge Pump
      9. 7.3.9  5-V Linear Regulator
      10. 7.3.10 Power Switch
      11. 7.3.11 Protection Circuits
        1. 7.3.11.1 VM Undervoltage Lockout (UVLO)
        2. 7.3.11.2 VM Overvoltage (VMOV)
        3. 7.3.11.3 Motor Overcurrent Protection (OCP)
        4. 7.3.11.4 Charge Pump Failure (CPFAIL)
        5. 7.3.11.5 Charge Pump Short (CPSC)
        6. 7.3.11.6 Rotor Lockup (RLOCK)
        7. 7.3.11.7 Overtemperature (OTS)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Clock PWM Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Hall Sensor Configurations and Connections
      2. 8.1.2 ENABLEn Considerations
      3. 8.1.3 Faster Starting and Stopping
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Performance Plot
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted) (1)(2)(3)
MIN MAX UNIT
Power supply voltage (VM) –0.3 42 V
Charge pump and high-side gate drivers (VCP, UHSG, VHSG, WHSG) –0.3 50 V
Output terminal, low side gate drivers, charge pump flying cap and switched VM power supply voltage (U, V, W, ULSG, VLSG, WLSG, CP1, CP2 VSW) –0.6 40 V
Internal core voltage regulator (VINT) –0.3 2.0 V
Linear voltage regulator output (VREG) –0.3 5.5 V
Sense current terminal (ISEN) –0.3 2.0 V
Digital terminal voltage (FAULTn, LOCKn, PWM, BRAKE, DIR, ENABLEn, HALLOUT) –0.5 5.75 V
Hall sensor input terminal voltage (HU+, HU–, HV+, HV–, HW+, HW–) 0 VREG V
Continuous total power dissipation See Thermal Information
Operating junction temperature range, TJ –40 150 °C
Storage temperature range, Tstg –60 150 °C
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground terminal.
(3) Power dissipation and thermal limits must be observed

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VM Motor power supply voltage range, ENABLEn = 0, motor operating (3) 8.5 32 V
VMDIS Motor power supply voltage range, ENABLEn = 1, motor not operating 4.5 35
IVREG VREG output current(1) 0 30 mA
IVSW VSW output current(1) 0 30
fHALL Hall sensor input frequency(4) 0 30 kHz
fPWM Frequency on PWM 16 50 (2) kHz
(1) Power dissipation and thermal limits must be observed
(2) Operational with frequencies above 50 kHz, but resolution is degraded
(3) Note that at VM < 12 V, gate drive output voltage tracks VM voltage
(4) fHALL of 50 Hz to 6.7 kHz is best

6.4 Thermal Information

THERMAL METRIC(1) DRV8307 UNIT
RHA (40 PINS)
RθJA Junction-to-ambient thermal resistance(2) 33.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(3) 23.0 °C/W
RθJB Junction-to-board thermal resistance(4) 8.8 °C/W
ψJT Junction-to-top characterization parameter(5) 0.3 °C/W
ψJB Junction-to-board characterization parameter(6) 8.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance(7) 2.3 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VM SUPPLY
IVM VM active current ENABLEn = 0, VREG and VSW open 12 18 mA
ISTBY VM standby current ENABLEn = 1 120 µA
VRESET VM logic reset voltage VM falling 4.6 V
VM rising 5.0
VREG SUPPLY
VVREG Output voltage IOUT = 1 to 30 mA 4.75 5 5.25 V
IVREG Output current 30 mA
VSW SUPPLY
RDS(ON) VSW switch on-resistance IOUT = 1 to 30 mA 9 20 Ω
IVSW Output current 30 mA
INTERNAL CLOCK OSCILLATOR
fCLK50 Internal CLK50 clock frequency 50 MHz
LOGIC-LEVEL INPUTS AND OUTPUTS
VIL Low-level input voltage 0.8 V
VIH High-level input voltage 1.5 5.5 V
IIL Low-level input current –50 50 µA
IIH High-level input current VIN = 3.3 V, DIR, BRAKE, PWM 20 100 µA
VIN = 3.3 V, ENABLEn 6 9
VHYS Input hysteresis voltage 0.1 0.3 0.5 V
RPD Input pulldown resistance DIR, BRAKE, PWM 50 100 150
ENABLEn 350 550
OPEN DRAIN OUTPUTS
VOL Low-level output voltage IOUT = 2.0 mA 0.5 V
IOH Output leakage current VOUT = 3.3 V 1 µA
HALL SENSOR INPUTS
VHYS Hall amplifier hysteresis voltage 15 20 25 mV
∆VHYS Hall amplifier hysteresis difference Between U, V, W –5 5 mV
VID Hall amplifier input differential 50 mV
VCM Hall amplifier input common mode voltage range 1.5 3.5 V
IIN Input leakage current Hx+ = Hx– –10 10 μA
MOSFET DRIVERS
VOUTH High-side gate drive output voltage IO = 100 μA, VM ≥ 12V VM + 10 V
VOUTL Low-side gate drive output voltage IO = 100 μA 10 V
IOUT Peak gate drive current 30 mA
CYCLE-BY-CYCLE CURRENT LIMITER
VLIMITER Voltage limit across RISENSE for the current limiter 0.225 0.25 0.275 V
PROTECTION CIRCUITS
VSENSEOCP Voltage limit across RISENSE for overcurrent protection 1.7 1.8 1.9 V
VFETOCP Voltage limit across each external FET’s drain 850 1000 1200 mV
VUVLO VM undervoltage lockout VM rising 8 V
VM falling 7.8
VOVLO VM overvoltage lockout VM rising 32 34 36 V
TTSD Thermal shutdown die temperature 150 160 °C
tLOCK Locked rotor detect time 3 s
VCPFAIL VCP failure threshold VM + 3.0 V

6.6 Timing Requirements

MIN NOM MAX UNIT
HALL SENSOR INPUTS
tHDEG Hall deglitch time 20 μs
CYCLE-BY-CYCLE CURRENT LIMITER
tBLANK Time that VLIMITER is ignored, from the start of the PWM cycle 6 µs
PROTECTION CIRCUITS
tRETRY Fault retry time after RLOCK or OTS 5 s
tSENSEOCP Deglitch time for VSENSEOCP to trigger 5 µs
tFETOCP Deglitch time for VFETOCP to trigger 5 µs

6.7 Typical Characteristics

DRV8307 D001_SLVSCK2.png
Figure 1. VREG Load Capability
DRV8307 D002_SLVSCK2.png
With the CSD88537ND FETs, a series resistor was added to the
high-side gate drive, and the VGS rise time was measured.
Figure 2. FET Turn-On Time vs Series Resistance