SLVSHB1A March   2023  – November 2024 DRV8329-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specification
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Auto
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information 2pkg
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Three BLDC Gate Drivers
        1. 7.3.1.1 PWM Control Modes
          1. 7.3.1.1.1 6x PWM Mode
          2. 7.3.1.1.2 3x PWM Mode
        2. 7.3.1.2 Device Hardware Interface
        3. 7.3.1.3 Gate Drive Architecture
          1. 7.3.1.3.1 Propagation Delay
          2. 7.3.1.3.2 Deadtime and Cross-Conduction Prevention
      2. 7.3.2 AVDD Linear Voltage Regulator
      3. 7.3.3 Pin Diagrams
      4. 7.3.4 Low-Side Current Sense Amplifiers
        1. 7.3.4.1 Current Sense Operation
      5. 7.3.5 Gate Driver Shutdown Sequence (DRVOFF)
      6. 7.3.6 Gate Driver Protective Circuits
        1. 7.3.6.1 PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 7.3.6.2 AVDD Power on Reset (AVDD_POR)
        3. 7.3.6.3 GVDD Undervoltage Lockout (GVDD_UV)
        4. 7.3.6.4 BST Undervoltage Lockout (BST_UV)
        5. 7.3.6.5 MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 7.3.6.6 VSENSE Overcurrent Protection (SEN_OCP)
        7. 7.3.6.7 Thermal Shutdown (OTSD)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Gate Driver Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Operating Mode
        3. 7.4.1.3 Fault Reset (nSLEEP Reset Pulse)
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Three Phase Brushless-DC Motor Control
        1. 8.2.1.1 Detailed Design Procedure
          1. 8.2.1.1.1  Motor Voltage
          2. 8.2.1.1.2  Bootstrap Capacitor and GVDD Capacitor Selection
          3. 8.2.1.1.3  Gate Drive Current
          4. 8.2.1.1.4  Gate Resistor Selection
          5. 8.2.1.1.5  System Considerations in High Power Designs
            1. 8.2.1.1.5.1 Capacitor Voltage Ratings
            2. 8.2.1.1.5.2 External Power Stage Components
            3. 8.2.1.1.5.3 Parallel MOSFET Configuration
          6. 8.2.1.1.6  Dead Time Resistor Selection
          7. 8.2.1.1.7  VDSLVL Selection
          8. 8.2.1.1.8  AVDD Power Losses
          9. 8.2.1.1.9  Current Sensing and Output Filtering
          10. 8.2.1.1.10 Power Dissipation and Junction Temperature Losses
      2. 8.2.2 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Bulk Capacitance Sizing
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Thermal Considerations
        1. 8.4.2.1 Power Dissipation
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Related Links
    4. 9.4 Receiving Notification of Documentation Updates
    5. 9.5 Community Resources
    6. 9.6 Trademarks
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bulk Capacitance Sizing

Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size. The amount of local capacitance depends on a variety of factors including:

  • The highest current required by the motor system
  • The power supply's type, capacitance, and ability to source current
  • The amount of parasitic inductance between the power supply and motor system
  • The acceptable supply voltage ripple
  • Type of motor (brushed DC, brushless DC, stepper)
  • The motor startup and braking methods

The inductance between the power supply and motor drive system will limit the rate current can change from the power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied.

The data sheet provides a recommended minimum value, but system level testing is required to determine the appropriate sized bulk capacitor.

DRV8329-Q1 Motor Drive Supply Parasitics ExampleFigure 8-19 Motor Drive Supply Parasitics Example