SLOSE48 December 2020 DRV8434A
PRODUCTION DATA
The power loss due to the PWM switching frequency depends on the slew rate (tSR), supply voltage, motor RMS current and the PWM switching frequency. The switching losses in each H-bridge during rise-time and fall-time are calculated as shown in Equation 5 and Equation 6.
Both tRISE_PWM and tFALL_PWM can be approximated as VVM/ tSR. After substituting the values of various parameters, and assuming 30-kHz PWM frequency, the switching losses in each H-bridge are calculated as shown below -
The total switching loss for the stepper motor driver (PSW) is calculated as twice the sum of rise-time (PSW_RISE) switching loss and fall-time (PSW_FALL) switching loss as shown below -
The rise-time (tRISE) and the fall-time (tFALL) are calculated based on typical values of the slew rate (tSR). This parameter is expected to change based on the supply-voltage, temperature and device to device variation.
The switching loss is directly proportional to the PWM switching frequency. The PWM frequency in an application will depend on the supply voltage, inductance of the motor coil, back emf voltage and OFF time or the ripple current (for smart tune ripple control decay mode).