SLLSFB6B May   2020  – May 2024 DRV8705-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Descriptions
  5.   Device Comparison Table
  6. Pin Configuration
  7. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  8. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 External Components
      2. 6.3.2 Device Interface Variants
        1. 6.3.2.1 Serial Peripheral Interface (SPI)
        2. 6.3.2.2 Hardware (H/W)
      3. 6.3.3 Input PWM Modes
        1. 6.3.3.1 Half-Bridge Control
        2. 6.3.3.2 H-Bridge Control
        3. 6.3.3.3 Split HS and LS Solenoid Control
      4. 6.3.4 Smart Gate Driver
        1. 6.3.4.1 Functional Block Diagram
        2. 6.3.4.2 Slew Rate Control (IDRIVE)
        3. 6.3.4.3 Gate Drive State Machine (TDRIVE)
      5. 6.3.5 Doubler (Single-Stage) Charge Pump
      6. 6.3.6 Low-Side Differential Current Shunt Amplifier
      7. 6.3.7 Pin Diagrams
        1. 6.3.7.1 Logic Level Input Pin (DRVOFF, IN1/EN, IN2/PH, nHIZx, nSLEEP, nSCS, SCLK, SDI)
        2. 6.3.7.2 Logic Level Push Pull Output (SDO)
        3. 6.3.7.3 Logic Level Open Drain Output (nFAULT)
        4. 6.3.7.4 Quad-Level Input (GAIN)
        5. 6.3.7.5 Six-Level Input (IDRIVE, VDS)
      8. 6.3.8 Protection and Diagnostics
        1. 6.3.8.1  Gate Driver Disable and Enable (DRVOFF and EN_DRV)
        2. 6.3.8.2  Fault Reset (CLR_FLT)
        3. 6.3.8.3  DVDD Logic Supply Power on Reset (DVDD_POR)
        4. 6.3.8.4  PVDD Supply Undervoltage Monitor (PVDD_UV)
        5. 6.3.8.5  PVDD Supply Overvoltage Monitor (PVDD_OV)
        6. 6.3.8.6  VCP Charge Pump Undervoltage Lockout (VCP_UV)
        7. 6.3.8.7  MOSFET VDS Overcurrent Protection (VDS_OCP)
        8. 6.3.8.8  Gate Driver Fault (VGS_GDF)
        9. 6.3.8.9  Thermal Warning (OTW)
        10. 6.3.8.10 Thermal Shutdown (OTSD)
        11. 6.3.8.11 Offline Short Circuit and Open Load Detection (OOL and OSC)
        12. 6.3.8.12 Fault Detection and Response Summary Table
    4. 6.4 Device Function Modes
      1. 6.4.1 Inactive or Sleep State
      2. 6.4.2 Standby State
      3. 6.4.3 Operating State
    5. 6.5 Programming
      1. 6.5.1 SPI Interface
      2. 6.5.2 SPI Format
      3. 6.5.3 SPI Interface for Multiple Slaves
        1. 6.5.3.1 SPI Interface for Multiple Slaves in Daisy Chain
  9. Register Maps
    1. 7.1 STATUS Registers
    2. 7.2 CONTROL Registers
  10. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Gate Driver Configuration
          1. 8.2.2.1.1 VCP Load Calculation Example
          2. 8.2.2.1.2 IDRIVE Calculation Example
        2. 8.2.2.2 Current Shunt Amplifier Configuration
        3. 8.2.2.3 Power Dissipation
  11. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
  12. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  13. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
      2. 11.1.2 Receiving Notification of Documentation Updates
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  14. 12Revision History
  15. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RHB|32
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Slew Rate Control (IDRIVE)

The IDRIVE component of the smart gate drive architecture implements adjustable gate drive current control to adjust the external MOSFET VDS slew rate. This is achieved by implementing adjustable pull up (IDRVP) and pull down (IDRVN) current sources for the internal gate driver architecture.

The external MOSFET VDS slew rates are a critical factor for optimizing radiated and conducted emissions, diode reverse recovery, dV/dt parasitic gate coupling, and overvoltage or undervoltage transients on the switch-node of the half-bridge. IDRIVE operates on the principle that the VDS slew rates are predominantly determined by the rate of the gate charge (or gate current) delivered during the MOSFET QGD or Miller charging region. By allowing the gate driver to adjust the gate current, it can effectively control the slew rate of the external power MOSFETs.

IDRIVE allows the DRV8705-Q1 to dynamically change the gate driver current setting through the IDRVP_x and IDRVN_x SPI registers or IDRIVE pin on H/W interface devices. The device provides 16 settings between the 0.5-mA and 62-mA range for the source and sink currents as shown in Table 6-8. The peak gate drive current is available for the tDRIVE duration. After the MOSFET is switched and the tDRIVE duration expires, the gate driver switches to a hold current (IHOLD) for the pull up source current to limit the output current in case of a short circuit condition and to improve the efficiency of the driver.

Table 6-8 IDRIVE Source (IDRVP) and Sink (IDRVN) Current
IDRVP_x / IDRVN_xSource / Sink Current (mA)
0000b0.5
0001b1
0010b2
0011b3
0100b4
0101b6
0110b8
0111b12
1000b16
1001b20
1010b24
1011b28
1100b31
1101b40
1110b48
1111b62