SLVSAC0F May   2010  – December 2015 DRV8841

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 PWM Motor Drivers
      2. 7.3.2 Blanking Time
      3. 7.3.3 Bridge Control
      4. 7.3.4 Current Regulation
      5. 7.3.5 Decay Mode
      6. 7.3.6 Protection Circuits
        1. 7.3.6.1 Overcurrent Protection (OCP)
        2. 7.3.6.2 Thermal Shutdown (TSD)
        3. 7.3.6.3 Undervoltage Lockout (UVLO)
    4. 7.4 Device Functional Modes
      1. 7.4.1 nRESET and nSLEEP Operation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Current Regulation
        2. 8.2.2.2 Decay Modes
        3. 8.2.2.3 Sense Resistor
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
    2. 9.2 Power Supply and Logic Sequencing
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
      1. 10.3.1 Power Dissipation
      2. 10.3.2 Heatsinking
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

5 Pin Configuration and Functions

PWP Package
28 Pin HTSSOP
Top View
DRV8841 pinout_slvsac0.gif

Pin Functions

PIN I/O(1) DESCRIPTION EXTERNAL COMPONENTS
OR CONNECTIONS
NAME NO.
POWER AND GROUND
GND 14, 28 Device ground
VMA 4 Bridge A power supply Connect to motor supply (8.2 V to 45 V). Both pins must be connected to the same supply, bypassed with a 0.1-uF capacitor to GND, and connected to appropriate bulk capacitance.
VMB 11 Bridge B power supply
V3P3OUT 15 O 3.3-V regulator output Bypass to GND with a 0.47-μF 6.3-V ceramic capacitor. Can be used to supply VREF.
CP1 1 IO Charge pump flying capacitor Connect a 0.01-μF 50-V capacitor between CP1 and CP2.
CP2 2 IO Charge pump flying capacitor
VCP 3 IO High-side gate drive voltage Connect a 0.1-μF 16-V ceramic capacitor and a 1-MΩ resistor to VM.
CONTROL
AIN1 21 I Bridge A input 1 Logic input controls state of AOUT1. Internal pulldown.
AIN2 20 I Bridge A input 2 Logic input controls state of AOUT2. Internal pulldown.
AI0 24 I Bridge A current set Sets bridge A current: 00 = 100%,
01 = 71%, 10 = 38%, 11 = 0
Internal pulldown.
AI1 25 I
BIN1 22 I Bridge B input 1 Logic input controls state of BOUT1. Internal pulldown.
BIN2 23 I Bridge B input 2 Logic input controls state of BOUT2. Internal pulldown.
BI0 26 I Bridge B current set Sets bridge B current: 00 = 100%,
01 = 71%, 10 = 38%, 11 = 0
Internal pulldown.
BI1 27 I
DECAY 19 I Decay mode Low = slow decay, open = mixed decay,
high = fast decay. Internal pulldown and pullup.
nRESET 16 I Reset input Active-low reset input initializes internal logic and disables the H-bridge outputs. Internal pulldown.
nSLEEP 17 I Sleep mode input Logic high to enable device, logic low to enter low-power sleep mode. Internal pulldown.
AVREF 12 I Bridge A current set reference input Reference voltage for winding current set. Can be driven individually with an external DAC for microstepping, or tied to a reference (for example, V3P3OUT).
BVREF 13 I Bridge B current set reference input
STATUS
nFAULT 18 OD Fault Logic low when in fault condition (overtemperature, overcurrent)
OUTPUT
ISENA 6 IO Bridge A ground / Isense Connect to current sense resistor for bridge A
ISENB 9 IO Bridge B ground / Isense Connect to current sense resistor for bridge B
AOUT1 5 O Bridge A output 1 Connect to motor winding A
AOUT2 7 O Bridge A output 2
BOUT1 10 O Bridge B output 1 Connect to motor winding B
BOUT2 8 O Bridge B output 2
(1) Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output