SLVSDA4C January 2017 – March 2020 DRV8886
PRODUCTION DATA.
Using the same methodology along with Equation 3 and Equation 4, the VDAC error contribution to IFS can be shown. This is done by removing the error from VRREF, ARREF, and RREF. The following examples show the VDAC error value with a 3% and 10% variation.
Parameter | Minimum | Typical | Maximum |
---|---|---|---|
3% ERROR | |||
VDAC | 0.3983 | 0.4107 | 0.423 |
ARREF | 30000 | 30000 | 30000 |
VRREF | 1.232 | 1.232 | 1.232 |
RREF | 20000 | 20000 | 20000 |
IFS (mA) | 985.08 | 1000 | 1015.07 |
Error (%) | –1.50 | 1.50 | |
10% ERROR | |||
VDAC | 0.3696 | 0.4107 | 0.4517 |
ARREF | 30000 | 30000 | 30000 |
VRREF | 1.232 | 1.232 | 1.232 |
RREF | 20000 | 20000 | 20000 |
IFS (mA) | 950.08 | 1000 | 1050.07 |
Error (%) | –5.00 | 5.00 |
Parameter | Minimum | Typical | Maximum |
---|---|---|---|
3% ERROR | |||
VDAC | 0.8764 | 0.9035 | 0.9306 |
ARREF | 30000 | 30000 | 31 900 |
VRREF | 1.232 | 1.232 | 1.232 |
RREF | 20000 | 20000 | 20000 |
IFS (mA) | 367.18 | 400 | 433.17 |
Error (%) | –8.25 | 8.25 | |
10% ERROR | |||
VDAC | 0.8131 | 0.9035 | 0.9938 |
ARREF | 30000 | 30000 | 30000 |
VRREF | 1.232 | 1.232 | 1.232 |
RREF | 20000 | 20000 | 20000 |
IFS (mA) | 290.19 | 400 | 510.16 |
Error (%) | –27.48 | 27.48 |
Parameter | Minimum | Typical | Maximum |
---|---|---|---|
3% ERROR | |||
VDAC | 1.0357 | 1.0677 | 1.0998 |
ARREF | 30000 | 30000 | 30000 |
VRREF | 1.232 | 1.232 | 1.232 |
RREF | 20000 | 20000 | 20000 |
IFS (mA) | 161.22 | 200 | 239.20 |
Error (%) | –19.48 | 19.48 | |
10% ERROR | |||
VDAC | 0.9610 | 1.0677 | 1.1745 |
ARREF | 30000 | 30000 | 30000 |
VRREF | 1.232 | 1.232 | 1.232 |
RREF | 20000 | 20000 | 20000 |
IFS (mA) | 70.23 | 200 | 330.19 |
Error (%) | –64.92 | 64.92 |
These tables show that as the variation in VDAC increases, the error percentage increases. Also, for very low currents, the error percentage increases greatly because of the VDAC proximity to the VRREF voltage.