SLVSFV6B August   2022  – October 2023 DRV8962

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1  Overview
    2. 7.2  Functional Block Diagram
    3. 7.3  Feature Description
    4. 7.4  Independent Half-bridge Operation
    5. 7.5  Current Sensing and Regulation
      1. 7.5.1 Current Sensing and Feedback
      2. 7.5.2 Current Sensing with External Resistor
      3. 7.5.3 Current Regulation
    6. 7.6  Charge Pump
    7. 7.7  Linear Voltage Regulator
    8. 7.8  VCC Voltage Supply
    9. 7.9  Logic Level Pin Diagram
    10. 7.10 Protection Circuits
      1. 7.10.1 VM Undervoltage Lockout (UVLO)
      2. 7.10.2 VCP Undervoltage Lockout (CPUV)
      3. 7.10.3 Logic Supply Power on Reset (POR)
      4. 7.10.4 Overcurrent Protection (OCP)
      5. 7.10.5 Thermal Shutdown (OTSD)
      6. 7.10.6 nFAULT Output
      7. 7.10.7 Fault Condition Summary
    11. 7.11 Device Functional Modes
      1. 7.11.1 Sleep Mode
      2. 7.11.2 Operating Mode
      3. 7.11.3 nSLEEP Reset Pulse
      4. 7.11.4 Functional Modes Summary
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Driving Solenoid Loads
        1. 8.1.1.1 Solenoid Driver Typical Application
        2. 8.1.1.2 Thermal Calculations
          1. 8.1.1.2.1 Power Loss Calculations
          2. 8.1.1.2.2 Junction Temperature Estimation
        3. 8.1.1.3 Application Performance Plots
      2. 8.1.2 Driving Stepper Motors
        1. 8.1.2.1 Stepper Driver Typical Application
        2. 8.1.2.2 Power Loss Calculations
        3. 8.1.2.3 Junction Temperature Estimation
      3. 8.1.3 Driving Brushed-DC Motors
        1. 8.1.3.1 Brushed-DC Driver Typical Application
        2. 8.1.3.2 Power Loss Calculation
        3. 8.1.3.3 Junction Temperature Estimation
        4. 8.1.3.4 Driving Single Brushed-DC Motor
      4. 8.1.4 Driving Thermoelectric Coolers (TEC)
      5. 8.1.5 Driving Brushless DC Motors
  10. Package Thermal Considerations
    1. 9.1 DDW Package
      1. 9.1.1 Thermal Performance
        1. 9.1.1.1 Steady-State Thermal Performance
        2. 9.1.1.2 Transient Thermal Performance
    2. 9.2 DDV Package
    3. 9.3 PCB Material Recommendation
  11. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance
    2. 10.2 Power Supplies
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Power Loss Calculations

The total power dissipation in each half-bridge can be calculated as -

PHB = PHS + PLS = [RDS(ON) × IL2] + [((2 x VD x tD) + (VM x tRF)) x IL x fPWM]

Where,

  • RDS(ON) = ON resistance of each FET
    • For DRV8962, it is typically 53 mΩ at 25 °C, and 80 mΩ at 150 °C.

  • fPWM = PWM switching frequency
  • VM = Supply voltage to the driver
  • IL = Load current
  • D = PWM duty cycle (between 0 and 1)
  • tRF = Output voltage rise/ fall time

    • For DRV8962, the rise/fall time is either 70 ns or 140 ns

  • VD = FET body diode forward bias voltage
    • For DRV8962, it is 1 V

  • tD = dead time
    • For DRV8962, it is 300 ns

So, total power dissipation in the DRV8962 is -

PTOT = n × PHB + PQ

Where n is the number of half-bridges switching at the same time, and PQ is the quiescent power loss.

For this example, let us assume -

  • All four half-bridges are switching

  • VM = 24 V

  • IL = 3 A

  • Ambient temperature (TA) = 25 °C

  • tRF = 70 ns

  • Input PWM frequency = 20 kHz

When the VCC pin is connected to an external power supply, the quiescent current is 4 mA, and therefore PQ will be (24 V x 4 mA) = 96 mW.

PHB = [53 mΩ × 3 2] + [((2 x 1 V x 300 ns) + (24 V x 70 ns)) x 3 A x 20 KHz] = 0.614 W

PTOT = (4 x 0.614) + 0.096 = 2.552 W