SBOS776C March   2016  – March 2021 INA3221-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Basic ADC Functions
      2. 8.3.2 Alert Monitoring
        1. 8.3.2.1 Critical Alert
          1. 8.3.2.1.1 Summation Control Function
        2. 8.3.2.2 Warning Alert
        3. 8.3.2.3 Power-Valid Alert
        4. 8.3.2.4 Timing-Control Alert
        5. 8.3.2.5 Default Settings
      3. 8.3.3 Software Reset
    4. 8.4 Device Functional Modes
      1. 8.4.1 Averaging Function
      2. 8.4.2 Multiple Channel Monitoring
        1. 8.4.2.1 Channel Configuration
        2. 8.4.2.2 Averaging and Conversion-Time Considerations
      3. 8.4.3 Filtering and Input Considerations
    5. 8.5 Programming
      1. 8.5.1 Bus Overview
        1. 8.5.1.1 Serial Bus Address
        2. 8.5.1.2 Serial Interface
      2. 8.5.2 Writing To and Reading From the INA3221-Q1
        1. 8.5.2.1 High-Speed I2C Mode
      3. 8.5.3 SMBus Alert Response
    6. 8.6 Register Maps
      1. 8.6.1 Summary of Register Set
      2. 8.6.2 Register Descriptions
        1. 8.6.2.1  Configuration Register (address = 00h) [reset = 7127h]
        2. 8.6.2.2  Channel-1 Shunt-Voltage Register (address = 01h), [reset = 00h]
        3. 8.6.2.3  Channel-1 Bus-Voltage Register (address = 02h) [reset = 00h]
        4. 8.6.2.4  Channel-2 Shunt-Voltage Register (address = 03h) [reset = 00h]
        5. 8.6.2.5  Channel-2 Bus-Voltage Register (address = 04h) [reset = 00h]
        6. 8.6.2.6  Channel-3 Shunt-Voltage Register (address = 05h) [reset = 00h]
        7. 8.6.2.7  Channel-3 Bus-Voltage Register (address = 06h) [reset = 00h]
        8. 8.6.2.8  Channel-1 Critical-Alert Limit Register (address = 07h) [reset = 7FF8h]
        9. 8.6.2.9  Warning-Alert Channel-1 Limit Register (address = 08h) [reset = 7FF8h]
        10. 8.6.2.10 Channel-2 Critical-Alert Limit Register (address = 09h) [reset = 7FF8h]
        11. 8.6.2.11 Channel-2 Warning-Alert Limit Register (address = 0Ah) [reset = 7FF8h]
        12. 8.6.2.12 Channel-3 Critical-Alert Limit Register (address = 0Bh) [reset = 7FF8h]
        13. 8.6.2.13 Channel-3 Warning-Alert Limit Register (address = 0Ch) [reset = 7FF8h]
        14. 8.6.2.14 Shunt-Voltage Sum Register (address = 0Dh) [reset = 00h]
        15. 8.6.2.15 Shunt-Voltage Sum-Limit Register (address = 0Eh) [reset = 7FFEh]
        16. 8.6.2.16 Mask/Enable Register (address = 0Fh) [reset = 0002h]
        17. 8.6.2.17 Power-Valid Upper-Limit Register (address = 10h) [reset = 2710h]
        18. 8.6.2.18 Power-Valid Lower-Limit Register (address = 11h) [reset = 2328h]
        19. 8.6.2.19 Manufacturer ID Register (address = FEh) [reset = 5449h]
        20. 8.6.2.20 Die ID Register (address = FFh) [reset = 3220]
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

High-Speed I2C Mode

When the bus is idle, the SDA and SCL lines are pulled high by the pull-up resistors. The master generates a start condition followed by a valid serial byte with the high-speed (Hs) master code 00001XXX. This transmission is made in fast (400 kHz) or standard (100 kHz) (F/S) mode at no more than 400 kHz. The INA3221-Q1 does not acknowledge the Hs master code, but does recognize it and switches its internal filters to support 2.44-MHz operation.

The master then generates a repeated start condition (a repeated start condition has the same timing as the start condition). After this repeated start condition, the protocol is the same as F/S mode, except that transmission speeds up to 2.44 MHz are allowed. Instead of using a stop condition, the master uses a repeated start conditions to secure the bus in Hs mode. A stop condition ends the Hs mode, and switches all internal INA3221-Q1 filters to support F/S mode.

Figure 8-13 shows the bus timing, and Table 8-2 lists the bus timing definitions.

GUID-B0FA2F52-0660-4631-9BC8-AEBAA89E1731-low.gifFigure 8-13 Bus Timing
Table 8-2 Bus Timing Definitions(1)
PARAMETERFAST MODEHIGH-SPEED MODEUNIT
MINMAXMINMAX
f(SCL)SCL operating frequency0.0010.40.0012.44MHz
t(BUF)Bus free time between stop and start conditions1300160ns
t(HDSTA)Hold time after repeated START condition.
After this period, the first clock is generated.
600160ns
t(SUSTA)Repeated start condition setup time600160ns
t(SUSTO)STOP condition setup time600160ns
t(HDDAT)Data hold time00ns
t(VDDAT)Data valid time1200260ns
t(SUDAT)Data setup time10010ns
t(LOW)SCL clock low period1300270ns
t(HIGH)SCL clock high period60060ns
tfDAData fall time500150ns
tfCLClock fall time30040ns
trClock rise time30040ns
Clock rise time for SCLK ≤ 100 kHz1000ns
Values based on a statistical analysis of a one-time sample of devices. Minimum and maximum values are not production tested.
A0 = A1 = 0.