SLLSFX1 September   2024 ISO6163

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety-Related Certifications
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics—5V Supply (±10%)
    10. 5.10 Supply Current Characteristics—5V Supply (±10%)
    11. 5.11 Electrical Characteristics—3.3V Supply (±10%)
    12. 5.12 Supply Current Characteristics—3.3V Supply (±10%)
    13. 5.13 Electrical Characteristics—2.5V Supply (Minimum)
    14. 5.14 Supply Current Characteristics—2.5V Supply  (Minimum)
    15. 5.15 Switching Characteristics—5V Supply (±10%)
    16. 5.16 Switching Characteristics—3.3V Supply (±10%)
    17. 5.17 Switching Characteristics—2.5V Supply (Minimum)
    18. 5.18 Insulation Characteristics Curves
    19. 5.19 Typical Characteristics
      1. 5.19.1 Typical Characteristics: Supply Current ACTIVE state
      2. 5.19.2 Typical Characteristics: High-Speed Channels (ACTIVE state)
      3. 5.19.3 Typical Characteristics: Supply Current STANDBY State
      4. 5.19.4 Typical Characteristics: Low-Speed Control Channels (ACTIVE and STANDBY States)
      5. 5.19.5 Typical Characteristics: Undervoltage Threshold
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Functional Block Diagram
      2. 7.1.2 Feature Description
    2. 7.2 High-Speed Data Channels: A, B, E and F
    3. 7.3 Low-Speed Control Channels With Automatic Enable: C and D
      1. 7.3.1 Low-Speed Control Channels: Timing and Level Details for Automatic Enable
      2. 7.3.2 Low-Speed Control Channels: Considerations if Used for Data
      3. 7.3.3 Low-Speed Control Channels: Considerations During Power Up and Device Reset Events
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device I/O Schematics
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 PCB Material
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Option Addendum
    2. 11.2 Tape and Reel Information

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DW|16
Thermal pad, mechanical data (Package|Pins)

Typical Characteristics: Supply Current STANDBY State

STANDBY state is held with one low-speed control channel held HIGH while second channel is swept. The data rates swept are selected to avoid LOW durations longer than tAMS which transition the device to ACTIVE state.
Note: The high-speed channels are turned off (high impedance) in the device STANDBY state.
Note: For ICC1 and ICC2 at with DC signals on the low-speed control channels, please refer to the Supply Characteristics table for the supply voltage, VCC1 and VCC2, supplied to each side of the isolator.
ISO6163 ISO6163 Supply Current vs Data Rate (With 15pF
                        Load) for Low-Speed Channel in STANDBY state
TA = 25°C CL = 15pF STANDBY State
Figure 5-8 ISO6163 Supply Current vs Data Rate (With 15pF Load) for Low-Speed Channel in STANDBY state
ISO6163 ISO6163 Supply Current vs Data Rate (With No
                        Load) for Low-Speed Channel in STANDBY state
TA = 25°C CL = No Load STANDBY State
Figure 5-9 ISO6163 Supply Current vs Data Rate (With No Load) for Low-Speed Channel in STANDBY state