SNVSBJ6A March 2020 – August 2020 LM25184-Q1
PRODUCTION DATA
The LM25184-Q1 uses a variable-frequency, peak current-mode (VFPCM) control architecture with three possible modes of operation as illustrated in Figure 7-2.
The LM25184-Q1 operates in boundary conduction mode (BCM) at heavy loads. The power MOSFET turns on when the current in the secondary winding reaches zero, and the MOSFET turns off when the peak primary current reaches the level dictated by the output of the internal error amplifier. As the load is decreased, the frequency increases to maintain BCM operation. Equation 1 gives the duty cycle of the flyback converter in BCM.
where
Equation 2 gives the output power in BCM, where the applicable switching frequency and peak primary current are specified by Equation 3 and Equation 4, respectively.
As the load decreases, the LM25184-Q1 clamps the maximum switching frequency to 350 kHz, and the converter enters discontinuous conduction mode (DCM). The power delivered to the output in DCM is proportional to the peak primary current squared as given by Equation 5 and Equation 6. Thus, as the load decreases, the peak current reduces to maintain regulation at 350-kHz switching frequency.
At even lighter loads, the primary-side peak current set by the internal error amplifier decreases to a minimum level of 0.82 A, or 20% of its 4.1-A peak value, and the MOSFET off-time extends to maintain the output load requirement. The system operates in frequency foldback mode (FFM), and the switching frequency decreases as the load current is reduced. Other than a fault condition, the lowest frequency of operation of the LM25184-Q1 is 12 kHz, which sets a minimum load requirement of approximately 0.5% full load.