SNOS965J June   2001  – December 2015 LM2611

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Cuk Converter
      2. 7.3.2 Output and Input Inductor
      3. 7.3.3 Switch Current Limit
      4. 7.3.4 Input Capacitor
      5. 7.3.5 Output Capacitor
      6. 7.3.6 Improving Transient Response and Compensation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Hysteretic Mode
        1. 7.4.1.1 Thermal Shutdown
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Cuk Converter With Integrated Switch
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 5-V to -5-V Inverting Converter
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Application Curves
      3. 8.2.3 9-V to -5-V Inverting Converter
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Application Curve
      4. 8.2.4 12-V to -5-V Inverting Converter
        1. 8.2.4.1 Design Requirements
        2. 8.2.4.2 Application Curve
      5. 8.2.5 LM2611 Operating With Separate Power and Biasing Supplies
        1. 8.2.5.1 Design Requirements
        2. 8.2.5.2 Detailed Design Procedure
          1. 8.2.5.2.1 Split Supply Operation
      6. 8.2.6 Shutdown and Soft-Start
        1. 8.2.6.1 Design Requirements
        2. 8.2.6.2 Detailed Design Procedure
          1. 8.2.6.2.1 Shutdown and Soft-Start
        3. 8.2.6.3 Application Curves
      7. 8.2.7 High Duty Cycle and Load Current
        1. 8.2.7.1 Design Requirements
        2. 8.2.7.2 Detailed Design Procedure
          1. 8.2.7.2.1 High Duty Cycle and Load Current Operation
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Community Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Input voltage, VIN 14.5 V
SW voltage –0.4 36 V
NFB voltage –6 0.4 V
SHDN voltage –0.4 14.5 V
Maximum junction temperature 125 °C
Power dissipation (2) Internally limited
Lead temperature 300 °C
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(MAX), the junction-to-ambient thermal resistance, θJA, and the ambient temperature, TA. See the Electrical Characteristics table for the thermal resistance of various layouts. The maximum allowable power dissipation at any ambient temperature is calculated using: PD (MAX) = (TJ(MAX) − TA)/θJA. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2) ±2000 V
Machine Model (MM)(3) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.
(3) The machine model is a 200-pF capacitor discharged directly into each pin.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Supply voltage 2.7 14 V
Operating junction temperature, TJ −40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LM2611 UNIT
DBV (SOT-23)
5 PINS
RθJA Junction-to-ambient thermal resistance 163.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 115.2 °C/W
RθJB Junction-to-board thermal resistance 27.4 °C/W
ψJT Junction-to-top characterization parameter 12.9 °C/W
ψJB Junction-to-board characterization parameter 26.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Specifications in standard type face are for TJ = 25°C, unless otherwise specified. VIN = 5 V and IL = 0 A, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN (1) TYP (2) MAX (1) UNIT
VIN Input voltage TJ = −40°C to +85°C 2.7 14 V
ISW Switch current limit Grade A 1.2 A
Grade A; TJ = −40°C to +85°C 1 2
Grade B 0.9
Grade B; TJ = −40°C to +85°C 0.7
RDSON Switch ON resistance Grade A 0.5 0.65 Ω
Grade B 0.7 0.9
SHDNTH Shutdown threshold Device enabled; TJ = −40°C to +85°C 1.5 V
Device disabled; TJ = −40°C to +85°C 0.5
ISHDN Shutdown pin bias current VSHDN = 0 V 0 µA
VSHDN = 5 V 0
VSHDN = 5 V; TJ = −40°C to +85°C 1
NFB Negative feedback reference VIN = 3 V −1.23 V
VIN = 3 V; TJ = −40°C to +85°C −1.205 −1.255
INFB NFB pin bias current VNFB =−1.23 V −4.7 µA
VNFB =−1.23 V; TJ = −40°C to +85°C −2.7 −6.7
Iq Quiescent current VSHDN = 5 V, Switching 1.8 mA
VSHDN = 5 V, Switching;
TJ = −40°C to +85°C
3.5
VSHDN = 5 V, Not Switching 270 µA
VSHDN = 5 V, Not Switching;
TJ = −40°C to +85°C
500
VSHDN = 0 V 0.024 µA
VSHDN = 0 V; TJ = −40°C to +85°C 1
%VOUT/ ΔVIN Reference line regulation 2.7 V ≤ VIN ≤ 14 V 0.02 %/V
fS Switching frequency TJ = 25°C 1.4 MHz
TJ = −40°C to +85°C 1 1.8
DMAX Maximum duty cycle TJ = 25°C 88%
TJ = −40°C to +85°C 82%
IL Switch leakage VSW = 5 V, Not Switching 1 µA
(1) All limits are specified at room temperature (standard typeface) and at temperature extremes (bold typeface). All room temperature limits are 100% tested through statistical analysis. All limits at temperature extremes via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at 25°C and represent the expected value of the parameter.

Typical Characteristics

LM2611 20018112.gif
Figure 1. RDS(ON) vs VIN
LM2611 20018111.gif
Figure 3. Switch Current Limit vs VIN
LM2611 20018119.gif
Figure 5. Oscillator Frequency vs VIN
LM2611 20018107.gif
TA = 25°C VOUT = −5 V
Figure 7. VNFB vs VIN
LM2611 20018108.gif
TA = 25°C VOUT = −5 V
Figure 9. INFB vs VIN
LM2611 20018144.gif
Figure 11. Iq vs Ambient Temperature (No Load)
LM2611 20018145.gif
VIN = 5 V
Figure 2. RDS(ON) vs Ambient Temperature
LM2611 20018143.gif
VIN = 5 V
Figure 4. Switch Current Limit vs Ambient Temperature
LM2611 20018116.gif
VIN = 5 V
Figure 6. Oscillator Frequency vs Ambient Temperature
LM2611 20018124.gif
VIN = 5 V
Figure 8. VNFB vs Ambient Temperature
LM2611 20018109.gif
VIN = 3.5 V VOUT = −5 V
Figure 10. INFB vs Ambient Temperature
LM2611 20018110.gif
VIN = 5 V
Figure 12. VSHUTDOWN vs Ambient Temperature