SNVS569C May   2009  – October 2016 LM3550

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 STROBE Pin
      2. 7.3.2 End-of-Charge Pin (EOC)
      3. 7.3.3 ALD/TEMP Pin
      4. 7.3.4 IND Pin
      5. 7.3.5 BAL Pin
      6. 7.3.6 Super-Capacitor Charging Time
      7. 7.3.7 Super-Capacitor Voltage Profile
      8. 7.3.8 Peak Flash Current
      9. 7.3.9 Maximum Flash Duration
    4. 7.4 Device Functional Modes
      1. 7.4.1 State Machine Description
        1. 7.4.1.1 Basic Description
        2. 7.4.1.2 Shutdown State
        3. 7.4.1.3 Torch State
        4. 7.4.1.4 Charge State
          1. 7.4.1.4.1 Fixed-Voltage-Charge Mode
          2. 7.4.1.4.2 Optimal Charge Mode
        5. 7.4.1.5 Torch and Charge State
        6. 7.4.1.6 Flash State
        7. 7.4.1.7 EOC Functionality
        8. 7.4.1.8 State Diagram FGATE = 1
        9. 7.4.1.9 Optimal Charge Mode vs Fixed Voltage Mode
          1. 7.4.1.9.1 Optimal Charge Mode vs Fixed Voltage Mode
    5. 7.5 Programming
      1. 7.5.1 I2C-Compatible Interface
        1. 7.5.1.1 Data Validity
        2. 7.5.1.2 Start and Stop Conditions
        3. 7.5.1.3 Transferring Data
        4. 7.5.1.4 I2C-Compatible Child Address: 0x53
    6. 7.6 Register Maps
      1. 7.6.1 Internal Registers
        1. 7.6.1.1 General Purpose Register Description
        2. 7.6.1.2 Current Control Register Description
        3. 7.6.1.3 Options Control Register Description
        4. 7.6.1.4 ALD/TEMP Sense High/Low Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Component Selection
          1. 8.2.2.1.1 Super-Capacitor
          2. 8.2.2.1.2 Boost Capacitors
          3. 8.2.2.1.3 Current Source FET
          4. 8.2.2.1.4 ALD/TEMP Components
            1. 8.2.2.1.4.1 NTC Selection
            2. 8.2.2.1.4.2 Ambient Light Sensor
          5. 8.2.2.1.5 Thermal Protection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Device Nomenclature
    2. 11.2 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.1.2 Device Nomenclature

    VBATT Voltage supplying charger circuit.
    VCAP Super-capacitor voltage at the end of the charge cycle and before a flash.
    ICL Maximum current allowed to be drawn from the battery.
    IFLASH LED current during the flash event.
    tFLASH Desired flash duration.
    CSC Super capacitor value.
    VLED Flash diode forward voltage at IFLASH.
    VHR The headroom required across the FET and the Sense resistor to maintain current sink regulation.
    VFB The degeneration resistor RSENSE regulation voltage that in part sets IFLASH.
    RDSON On-Resistance of NFET.
    VRDSON The voltage drop across the current source FET.
    VPUMP The initial SC voltage required for the Flash.
    RSENSE Current set resistor.
    VDROOP Voltage droop on the super-capacitor during a flash of duration tFLASH.

    = IFLASH×tFLASH / CSC
    RESR Super-capacitor ESR value.
    VESR Voltage drop due to SC ESR.
    VBAL Voltage drop due to LED ballast resistors
    VOH Overhead charge voltage required for constant current regulation during the entire flash duration.
    VPUMP VOH + VLED+ VESR = VFB + VRDSON + VESR + VLED + VDROOP + VBAL
    VHR VFB + VRDSON

11.2 Related Documentation

For additional information, see the following:

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

esds-image

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.7 Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.