SNVSA63A April   2015  – September 2015 LM3632A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Timing Requirements (SDA, SCL)
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Features Description
      1. 7.3.1 Backlight
        1. 7.3.1.1 Brightness Control
          1. 7.3.1.1.1 LED Current with PWM Disabled
          2. 7.3.1.1.2 LED Current with PWM Enabled
        2. 7.3.1.2 Sloper
        3. 7.3.1.3 Mapper
        4. 7.3.1.4 PWM Input
        5. 7.3.1.5 PWM Minimum On/Off Time
        6. 7.3.1.6 PWM Resolution and Input Frequency Range
        7. 7.3.1.7 PWM Hysteresis
        8. 7.3.1.8 PWM Timeout
        9. 7.3.1.9 Backlight Boost Converter
          1. 7.3.1.9.1 Headroom Voltage
          2. 7.3.1.9.2 Backlight Protection and Faults
            1. 7.3.1.9.2.1 Overvoltage Protection (OVP) and Open-Load Fault Protection
            2. 7.3.1.9.2.2 Overcurrent Protection (OCP) and Overcurrent Protection Flag
      2. 7.3.2 LCM Bias
        1. 7.3.2.1 Display Bias Boost Converter (VVPOS, VVNEG)
        2. 7.3.2.2 Auto Sequence Mode
        3. 7.3.2.3 Wake-up Mode
        4. 7.3.2.4 Active Discharge
        5. 7.3.2.5 LCM Bias Protection and Faults
          1. 7.3.2.5.1 LCM Overvoltage Protection
          2. 7.3.2.5.2 VNEG Overvoltage Protection
          3. 7.3.2.5.3 VPOS Short Circuit Protection
          4. 7.3.2.5.4 VNEG Short Circuit Protection
      3. 7.3.3 Flash
        1. 7.3.3.1 Flash Boost Converter
        2. 7.3.3.2 Start-Up (Enabling The Device)
        3. 7.3.3.3 Pass Mode
        4. 7.3.3.4 Flash Mode
        5. 7.3.3.5 Torch Mode
        6. 7.3.3.6 Power Amplifier Synchronization (TX)
        7. 7.3.3.7 VIN Monitor
        8. 7.3.3.8 Flash Fault Protections
          1. 7.3.3.8.1 Fault Operation
          2. 7.3.3.8.2 Flash Time-Out
          3. 7.3.3.8.3 Overvoltage Protection (OVP)
          4. 7.3.3.8.4 Current Limit
          5. 7.3.3.8.5 FLED and/or FL_OUT Short Fault
      4. 7.3.4 Software RESET
      5. 7.3.5 EN Input
      6. 7.3.6 Thermal Shutdown (TSD)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Modes of Operation
    5. 7.5 Programming
      1. 7.5.1 I2C-Compatible Serial Bus Interface
        1. 7.5.1.1 Interface Bus Overview
        2. 7.5.1.2 Data Transactions
        3. 7.5.1.3 Acknowledge Cycle
        4. 7.5.1.4 Acknowledge After Every Byte Rule
        5. 7.5.1.5 Addressing Transfer Formats
    6. 7.6 Register Maps
      1. 7.6.1  Revision (Address = 0x01) [reset = 0x09]
      2. 7.6.2  Backlight Configuration1 (Address = 0x02) [reset = 0x30]
      3. 7.6.3  Backlight Configuration2 (Address = 0x03) [reset = 0x0D]
      4. 7.6.4  Backlight Brightness LSB (Address = 0x04) [reset = 0x07]
      5. 7.6.5  Backlight Brightness MSB (Address = 0x05) [reset = 0xFF]
      6. 7.6.6  Flash/Torch Current (Address = 0x06) [reset = 0x3E]
      7. 7.6.7  Flash Configuration (Address = 0x07) [reset = 0x2F]
      8. 7.6.8  VIN Monitor (Address = 0x08) [reset = 0x03]
      9. 7.6.9  I/O Control (Address = 0x09) [reset = 0x00]
      10. 7.6.10 Enable (Address = 0x0A) [reset = 0x00]
      11. 7.6.11 Flags1 (Address = 0x0B) [reset = 0x00]
      12. 7.6.12 Display Bias Configuration (Address = 0x0C) [reset = 0x18]
      13. 7.6.13 LCM Boost Bias (Address = 0x0D) [reset = 0x1E]
      14. 7.6.14 VPOS Bias (Address = 0x0E) [reset = 0x1E]
      15. 7.6.15 VNEG Bias (Address = 0x0F) [reset = 0x1C]
      16. 7.6.16 Flags2 (Address = 0x10) [reset = 0x00]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 External Components
        2. 8.2.2.2 Inductor Selection
        3. 8.2.2.3 Boost Output Capacitor Selection
        4. 8.2.2.4 Input Capacitor Selection
      3. 8.2.3 Application Curves
        1. 8.2.3.1 Backlight Curves
        2. 8.2.3.2 LCM Bias Curves
        3. 8.2.3.3 Flash Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings(1)

Over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Voltage on VIN, FL_SW, FL_OUT, FLED, EN, LCM_EN1, LCM_EN2, PWM, STROBE, TX, SCL, SDA –0.3 6 V
Voltage on LCM_SW, LCM_OUT, VPOS, C1 –0.3 7 V
Voltage on VNEG, C2 –7 0.3 V
Voltage on BL_SW, BL_VOUT, BLED1, BLED2 –0.3 30 V
Continuous power dissipation Internally limited
Maximum junction temperature, TJ(MAX) 150 °C
Storage temperature, Tstg –45 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted).
MIN MAX UNIT
Input voltage, VIN 2.7 5 V
Operating ambient temperature, TA (1) –40 85 °C
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125ºC), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).

6.4 Thermal Information

THERMAL METRIC(1) LM3632A UNIT
YFF (DSBGA)
30 PINS
RθJA Junction-to-ambient thermal resistance 58.6 °C/W
RθJC Junction-to-case (top) thermal resistance 0.2
RθJB Junction-to-board thermal resistance 8.3
ΨJT Junction-to-top characterization parameter 1.4
ΨJB Junction-to-board characterization parameter 8.3
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise specified, limits apply over the full operating ambient temperature range (−40°C ≤ TA ≤ 85°C), VIN = 3.7 V, VVPOS = 5.5 V, VVNEG = –5.4 V, VLCM_OUT = 6 V.
PARAMETER TEST CONDITION MIN TYP MAX UNIT
CURRENT CONSUMPTION
ISD Shutdown current EN = 0 1 4 µA
IQ Quiescent current, device not switching EN = VIN, LCD bias boost disabled 2 10 µA
ILCD_EN LCD bias boost enabled, no-load 0.5 mA
DEVICE PROTECTION
TSD Thermal shutdown 140 °C
BACKLIGHT LED CURRENT SINKS
ILED_MAX Maximum output current in BLED1/2 2.7 V ≤ VIN ≤ 5 V, linear or exponential mode 25 mA
ILED_MIN Minimum output current in BLED1/2 2.7 V ≤ VIN ≤ 5 V, linear or exponential mode 50 µA
IACCU LED current accuracy(1) 2.7 V ≤ VIN ≤ 5 V, 50 µA ≤ ILED ≤ 25 mA, linear or exponential mode -3% 0.1% 3%
IMATCH LED1 to LED2 current matching(1) 2.7 V ≤ VIN ≤ 5 V, 300 µA ≤ ILED ≤ 25 mA, linear or exponential mode -2% 0.1% 2%
BACKLIGHT BOOST CONVERTER
VOVP_BL Backlight boost output overvoltage protection 2.7 V ≤ VIN ≤ 5 V, 29 V option 28 28.75 29.5 V
Efficiency Typical efficiency(2) ILED = 5 mA/string, VIN = 3.7 V
(2 x 7 LEDs), (POUT/PIN)
87%
VHR Regulated current sink headroom voltage ILED = 25 mA 250 mV
ILED = 5 mA 100 mV
VHR_MIN Current sink minimum headroom voltage ILED = 95% of nominal, ILED = 5 mA 30 mV
RDSON NMOS switch on resistance ISW = 100 mA 0.25 Ω
ICL NMOS switch current limit 2.7 V ≤ VIN ≤ 5 V 900 1000 1100 mA
ƒSW_BLBOOST Switching frequency 2.7 V ≤ VIN ≤ 5 V 500-kHz mode 450 500 550 kHz
1-MHz mode 900 1000 1100
DMAX Maximum duty cycle 94%
LCM BIAS BOOST CONVERTER
VOVP_LCM LCM bias boost output overvoltage protection 2.7 V ≤ VIN ≤ 5 V 7 V
ƒSW_LCMBST Switching frequency (3) 2.7 V ≤ VIN ≤ 5 V 2500 kHz
VLCM_OUT Bias boost output voltage range 4.5 6.4 V
Output voltage step size 50 mV
Peak-to-peak ripple voltage (3) ILOAD = 5 mA & 50 mA, CBST = 10 µF 50 mVpp
LCM_OUT line transient response (3) VIN + 500 mVp-p AC square wave, Tr = 100 mV/µs, 200 Hz, 12.5 % duty, ILOAD = 5 mA, CIN = 10 µF –50 ±25 50 mV
LCM_OUT load transient response (3) Load current step 0 mA to 100 mA, TRISE/FALL = 100 mA/µs, CIN = 10 µF –150 150 mV
ICL_LCMBST Valley current limit 1000 mA
RDSON_LCMBST High-side MOSFET on resistance VIN = VGS = 5 V, TA = 25°C 170
Low-side MOSFET on Resistance VIN = VGS = 5 V, TA = 25°C 290
EFFLCMBST Efficiency (2) VLCM_OUT = 6 V, 5 mA < ILCMBST < 100 mA 92%
tST_LCMBST Start-up time (LCM_OUT), VLCM_OUT = 10% to 90% (3) CLCM_BST = 10 µF 1000 µs
DISPLAY BIAS POSITIVE OUTPUT (VPOS)
VVPOS Programmable output voltage range 4 6 V
Output voltage step size 50 mV
Output voltage accuracy Output voltage = 5.4 V –1.5% 1.5%
VPOS line transient response (3) VIN + 500 mVp-p AC square wave, Tr = 100 mV/µs, 200 Hz, ILOAD = 25 mA, CIN = 10 µF –50 50 mV
VPOS load transient response (3) 0 to 50 mA load transient, CVPOS = 10 µF –50 50 mV
DC load regulation (3) 0 mA ≤ IVPOS ≤ 50 mA 20 mV
IMAX_VPOS Maximum output current 50 mA
ICL_VPOS Output current limit 80 mA
IRUSH_PK_VPOS Peak start-up inrush current (3) VLCM_OUT = 6.3 V, VPOS = 5.8 V, CVPOS = 10 µF 250 mA
VDO_VPOS VPOS dropout voltage (4) IVPOS = 50 mA, VVPOS = 5.5 V 100 mV
tST_VPOS Start-up time VPOS, VVPOS = 10% to 90% (3) CVPOS = 10 µF 500-µs setting 500 µs
800-µs setting 800
RPD_VPOS Output pull-down resistor (VPOS) VPOS disabled 30 80 110 Ω
DISPLAY BIAS NEGATIVE OUTPUT (VNEG)
VOVP_VNEG LCM bias negative charge-pump output overvoltage protection Below VVNEG output voltage target –250 mV
VSHORT_VNEG LCM bias negative charge-pump output short circuit protection VNEG to CP_GND –750 mV
VVNEG Programmable output voltage range –6 –4 V
Output voltage step size 50 mV
Output accuracy Output voltage = –5.4 V –1.5% 1.5%
Peak-to-peak ripple voltage(3) ILOAD = 5 mA & 50 mA,
CVNEG = 10 µF
60 mVpp
VNEG line transient response(3) VIN + 500 mVp-p AC square wave, 100 mV/µs 200 Hz, 12.5% duty at 5 mA –50 ±25 50 mV
VNEG load transient response(3) 0 to 50 mA load transient,
TRISE/FALL = 1 µs, CVNEG = 10 µF
100 mV
Efficiency(2) VIN = 3.7 V, VLCM_OUT = 5.8 V,
VVNEG = –5.4 V, IVNEG > 5 mA
92%
IMAX_VNEG Maximum output current(3) VIN = 3.7 V, VLCM_OUT = 5.8 V,
VVNEG = –5.4 V
50 mA
ICL_VNEG Output current limit(3) 75 mA
RDSON_VNEG Charge FET pump on resistance Q1 350
Q2 400
Q3 400
tST_VNEG Start-up time (VVNEG), VVNEG = 10% to 90%(3) VVNEG = –6 V, CVNEG = 10 µF 1 ms
RPU_VNEG Output pullup resistor, VNEG(3) VNEG Disabled, VLCM_OUT > 4.8 V 20 40 Ω
FLASH DRIVER BOOST
ILED Current source accuracy 1.5-A flash, VFL_OUT = 4 V 1.4 1.5 1.6 A
VOVP Output overvoltage protection trip point ON threshold 4.85 5 5.1 V
OFF threshold 4.75 4.9 5
VHR Current source regulation voltage 1.5-A flash, VFL_OUT = 4 V 275 mV
ICL Switch current limit 2.45 2.8 3.15 A
1.65 1.9 2.15
RNMOS NMOS switch on resistance INMOS = 1 A 80
RPMOS PMOS switch on resistance IPMOS = 1 A 100
VVINM Input voltage monitor trip threshold 2.76 2.9 3.04 V
LOGIC INPUTS (PWM, EN, LCM_EN1, LCM_EN2, SCL, SDA, TX, STROBE)
VIL Input logic low 0 0.4 V
VIH Input logic high 1.2 VIN V
LOGIC OUTPUTS (SDA)
VOL Output logic low 2.7 V ≤ VIN ≤ 5 V, IOL = 3 mA 0 0.4 V
PWM INPUT
ƒPWM_INPUT PWM input frequency(2) 100 20000 Hz
Minimum PWM ON/OFF time(3) PWM sampling frequency = 1 MHz 6 µs
PWM sampling frequency = 4 MHz 1.5
PWM timeout(3) PWM sampling frequency = 1 MHz 25 ms
PWM sampling frequency = 4 MHz 3
(1) Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current. Matching is the maximum difference from the average. For the constant current sinks on the device (BLED1 and BLED2), the following is determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of both outputs (AVG). Matching number is calculated: (ILED1 – ILED2)/(ILED1 + ILED2). The typical specification provided is the most likely norm of the matching figure of all parts. Note that some manufacturers have different definitions in use.
(2) Typical value only for information.
(3) Limits set by characterization and/or simulation only.
(4) VIN_VPOS – VVPOS when VVPOS has dropped 100 mV below target.

6.6 I2C Timing Requirements (SDA, SCL) (1)

Over operating free-air temperature range (unless otherwise noted)(see Figure 1).
MIN NOM MAX UNIT
ƒSCL Clock frequency 400 kHz
1 Hold time (repeated) START condition 0.6 µs
2 Clock low time 1.3 µs
3 Clock high time 600 ns
4 Set-up time for a repeated START condition 600 ns
5 Data hold time 50 ns
6 Data set-up time 100 ns
7 Rise time of SDA and SCL 20 + 0.1Cb 300 ns
8 Fall time of SDA and SCL 15 + 0.1Cb 300 ns
9 Set-Up time between a STOP and a START condition 1.3 µs
Cb Capacitive load for each bus line 10 200 pF
(1) Limits set by characterization and/or simulation only.
LM3632A LM3631_I2C_Timing_Parameters.gif Figure 1. I2C Timing Parameters

6.7 Typical Characteristics

Ambient temperature is 25°C and VIN is 3.7 V unless otherwise noted.
LM3632A D017_SNVSA63.gif
Figure 2. Backlight LED Current, Linear Control
LM3632A D019_SNVSA63.gif
2p6s LEDs
Figure 4. Backlight LED Current Matching
LM3632A D085_SNVSA63.gif
2p6s LEDs
Figure 6. Backlight LED Current Accuracy
LM3632A D021_SNVSA63.gif
2p6s LEDs
Figure 8. Backlight LED Current-Step Ratio
LM3632A D023_SNVSA63.gif
2p6s LEDs
Figure 10. Backlight Boost Voltage
LM3632A D025_SNVSA63.gif
2p6s LEDs
Figure 12. Backlight Headroom Voltage
LM3632A D027_SNVSA63.gif
IFLED = 1.5 A ƒ = 4 MHz
Figure 14. Flash LED Current
LM3632A D029_SNVSA63.gif
ƒ = 4MHz
Figure 16. Torch LED Current
LM3632A D031_SNVSA63.gif
IFLED = 1.5 A ƒ = 4 MHz VFLED = 4 V
Figure 18. Flash Headroom Voltage
LM3632A D050_SNVSA63.gif
VEN = VIN I2C = VIN
Figure 20. Iq Standby
LM3632A D018_SNVSA63.gif
Figure 3. Backlight LED Current, Exponential Control
LM3632A D020_SNVSA63.gif
2p6s LEDs
Figure 5. Backlight LED Current Matching
LM3632A D086_SNVSA63.gif
2p6s LEDs
Figure 7. Backlight LED Current Accuracy
LM3632A D022_SNVSA63.gif
2p6s LEDs
Figure 9. Backlight LED Current-Step Ratio
LM3632A D024_SNVSA63.gif
2p7s LEDs
Figure 11. Backlight Boost Voltage
LM3632A D026_SNVSA63.gif
ƒ = 4 MHz
Figure 13. Flash LED Current
LM3632A D028_SNVSA63.gif
IFLED = 0.8 A f = 4 MHz
Figure 15. Flash LED Current
LM3632A D030_SNVSA63.gif
IFLED = 375 mA ƒ = 4 MHz
Figure 17. Torch LED Current
LM3632A D048_SNVSA63.gif
VEN = 0 V I2C = 0 V
Figure 19. Iq Shutdown
LM3632A D049_SNVSA63.gif
VEN = 1.8 V I2C = 1.8 V
Figure 21. Iq Standby