SNVS867 June   2014 LM3633

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Control Bank Mapping
        1. 7.3.1.1 High-Voltage Control Banks (A and B)
        2. 7.3.1.2 Low-Voltage Control Banks (C, D, E, F, G, and H)
      2. 7.3.2 Pattern Generator
      3. 7.3.3 PWM Input
      4. 7.3.4 HWEN Input
      5. 7.3.5 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 High-Voltage LED Control
        1. 7.4.1.1  High-Voltage Boost Converter
        2. 7.4.1.2  High-Voltage Current Sinks (HVLED1, HVLED2 and HVLED3)
        3. 7.4.1.3  High-Voltage Current String Biasing
        4. 7.4.1.4  Boost Switching-Frequency Select
        5. 7.4.1.5  Automatic Switching Frequency Shift
        6. 7.4.1.6  Brightness Register Current Control
          1. 7.4.1.6.1 8-Bit Control (Preferred)
          2. 7.4.1.6.2 11-Bit Control
        7. 7.4.1.7  PWM Control
          1. 7.4.1.7.1 PWM Input Frequency Range
          2. 7.4.1.7.2 PWM Input Polarity
          3. 7.4.1.7.3 PWM Zero Detection
        8. 7.4.1.8  Start-up/Shutdown Ramp
        9. 7.4.1.9  Run-Time Ramp
        10. 7.4.1.10 High-Voltage Control A/B Ramp Select
        11. 7.4.1.11 LED Current Mapping Modes
        12. 7.4.1.12 Exponential Mapping
          1. 7.4.1.12.1 8-Bit Code Calculation
          2. 7.4.1.12.2 11-Bit Code Calculation
        13. 7.4.1.13 Linear Mapping
          1. 7.4.1.13.1 8-Bit Code Calculation
          2. 7.4.1.13.2 11-Bit Code Calculation
      2. 7.4.2 Low-Voltage LED Control
        1. 7.4.2.1  Integrated Charge Pump
        2. 7.4.2.2  Charge Pump Disabled
        3. 7.4.2.3  Automatic Gain
        4. 7.4.2.4  Automatic Gain (Flying Capacitor Detection)
        5. 7.4.2.5  1X Gain
        6. 7.4.2.6  2X Gain
        7. 7.4.2.7  Low-Voltage Current Sinks (LVLED1 to LVLED6)
        8. 7.4.2.8  Low-Voltage LED Biasing
        9. 7.4.2.9  Brightness Register Current Control
        10. 7.4.2.10 LED Current Mapping Modes
        11. 7.4.2.11 Exponential Mapping
        12. 7.4.2.12 Linear Mapping
        13. 7.4.2.13 Start-up/Shutdown Ramp
        14. 7.4.2.14 Run-Time Ramp
      3. 7.4.3 Low-Voltage LED Pattern Generator
        1. 7.4.3.1 Delay Time
        2. 7.4.3.2 Rise Time
        3. 7.4.3.3 Fall Time
        4. 7.4.3.4 High Period
        5. 7.4.3.5 Low Period
        6. 7.4.3.6 Low-Level Brightness
        7. 7.4.3.7 High-Level Brightness
      4. 7.4.4 Fault Flags/Protection Features
        1. 7.4.4.1 Open LED String (HVLED)
        2. 7.4.4.2 Shorted LED String (HVLED)
        3. 7.4.4.3 Open LED (LVLED)
        4. 7.4.4.4 Shorted LED (LVLED)
        5. 7.4.4.5 Overvoltage Protection (Inductive Boost)
        6. 7.4.4.6 Current Limit (Inductive Boost)
        7. 7.4.4.7 Current Limit (Charge Pump)
      5. 7.4.5 I2C-Compatible Interface
        1. 7.4.5.1 Start and Stop Conditions
        2. 7.4.5.2 I2C-Compatible Address
        3. 7.4.5.3 Transferring Data
    5. 7.5 Register Descriptions
      1. 7.5.1 Pattern Generator Registers
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Boost Converter Maximum Output Power (Boost)
          1. 8.2.2.1.1 Peak Current Limited
          2. 8.2.2.1.2 Output Voltage Limited
        2. 8.2.2.2 Boost Inductor Selection
        3. 8.2.2.3 Output Capacitor Selection
        4. 8.2.2.4 Schottky Diode Selection
        5. 8.2.2.5 Input Capacitor Selection
        6. 8.2.2.6 Maximum Output Power (Charge Pump)
        7. 8.2.2.7 Charge Pump Flying Capacitor Selection
        8. 8.2.2.8 Charge Pump Output Capacitor Selection
        9. 8.2.2.9 Charge Pump Input Capacitor Selection
      3. 8.2.3 Application Performance Plots
    3. 8.3 Initialization Set Up
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines (Boost)
      1. 10.1.1 Boost Output Capacitor Placement
      2. 10.1.2 Schottky Diode Placement
      3. 10.1.3 Inductor Placement
      4. 10.1.4 Boost Input Capacitor Placement
    2. 10.2 Layout Guidelines (Charge Pump)
      1. 10.2.1 Flying Capacitor (CP) Placement
      2. 10.2.2 Output Capacitor (CPOUT) Placement
      3. 10.2.3 Charge Pump Input Capacitor Placement
    3. 10.3 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VIN to GND −0.3 6 V
VSW, VOVP, VHVLED1, VHVLED2, VHVLED3 to GND −0.3 45
VSCL, VSDA, VPWM to GND −0.3 6
VHWEN, VCPOUT to GND, VC–, VC+ −0.3 6
VLVLED1- VLVLED6, to GND −0.3 6
Continuous power dissipation Internally Limited
Junction temperature (TJ-MAX) 150 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range −65 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) −1000 1000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) −250 250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN to GND 2.7 5.5 V
VSW, VOVP, VHVLED1, VVHLED2, VVHLED3 to GND, VPWM, VHWEN, VSDA, VSCL 0 40
VLVLED1- VLVLED6 to GND 0 6
Junction temperature (TJ) (1)(2) −40 125 °C
(1) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 140°C (typ.) and disengages at TJ= 125°C (typ.).
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (θJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (θJA × PD-MAX).

6.4 Thermal Information

THERMAL METRIC(1) DSBGA UNIT
(20 PINS)
RθJA Thermal resistance junction-to-ambient 55.3 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Limits apply over the full operating ambient temperature range (−40°C ≤ TA ≤ 85°C) and VIN = 3.6 V, unless otherwise specified.(1)(2)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY VOLTAGE (IN PIN)
ISHDN Shutdown current 2.7 V ≤ VIN ≤ 5.5 V, HWEN = GND 1 5.5 µA
THERMAL SHUTDOWN
TSD Thermal shutdown 140 °C
Hysteresis 15
BOOST CONVERTER AND HVLED
IHVLED(1/2/3) Output current regulation (HVLED1, HVLED2 or HVLED3) Full-scale current = 20.2 mA, PWM off, brightness code = max, exponential mapping, auto headroom off, HVLED1 Bank A, HVLED2/3 Bank B 2.7 V ≤ VIN ≤ 5.5 V 18.38
(–9%)
20.2 22.02
(9%)
mA
Full-scale current = 20.2 mA, PWM off, brightness code = max, exponential mapping, auto headroom off, HVLED1 Bank A, HVLED2/3 Bank B TA = 25°C –3.4% ±2.0% 3.2%
TA = 25°C,
3.0 V ≤ VIN ≤ 4.5 V
–3.6% 3.4%
TA = 25°C ±2.0%
IMATCH_HV HVLED1 to HVLED2 or HVLED3 matching (3) PWM off, exponential mapping, auto headroom off
HVLED1,2,3 = Bank A,
2.7 V ≤ VIN ≤ 5.5 V,
ILED = 20.2 mA
–2.5% 2.5%
TA = 25°C,
ILED = 20.2 mA
–2.0% 1.7%
2.7 V ≤ VIN ≤ 5.5 V
ILED = 500 µA
–8.5% 8.5%
ILED_MIN Minimum LED current Full-scale current = 20.2 mA, Exponential Mapping 6.0 µA
VREG_CS Regulated current sink headroom voltage Auto headroom off, TA = 25°C 400 mV
VHR_HV Minimum current sink headroom voltage for HVLED current sinks ILED = 95% of nominal, full-scale current = 20.2 mA, auto headroom off 2.7 V ≤ VIN ≤ 5.5 V 285
TA = 25°C 190
RDSON NMOS switch on resistance ISW = 500 mA, TA = 25°C 0.3 Ω
ICL_BOOST NMOS switch current limit 880 1120 mA
TA = 25°C 1000
VOVP Output overvoltage protection ON threshold
OVP select bits = 11
2.7 V ≤ VIN ≤ 5.5 V 38.75 41.1 V
TA = 25°C 40
Hysteresis TA = 25°C 1
fSW Switching frequency Boost frequency select bit = 0 2.7 V ≤ VIN ≤ 5.5 V 450 550 kHz
TA = 25°C 500
Boost frequency select bit = 1 2.7 V ≤ VIN ≤ 5.5 V 900 1100
TA = 25°C 1000
DMAX Maximum duty cycle 2.7 V ≤ VIN ≤ 5.5 V 94%
CHARGE PUMP AND LVLED
ILVLED(1/2/3/4/5/6) Output current regulation (low-voltage current sinks) Full-scale current = 20.2 mA, brightness code = 0xFF 2.7 V ≤ VIN ≤ 5.5 V 18.38 20.2 22.02 mA
IMATCH_LV LVLED current sink matching (4) Full-scale current = 20.2 mA 2.7 V ≤ VIN ≤ 5.5 V −3.1% 2%
VHR_LV Minimum current sink headroom voltage for LVLED current sinks ILED = 95% of nominal, full-scale current = 20.2 mA 125 mV
TA = 25°C 80
VGTH Threshold for gain transition 2.7 V ≤ VIN ≤ 5.5 V 65 190
TA = 25°C 125
VCPOUT Charge Pump Output Voltage 2X Gain TA = 25°C 4.42 V
ICL_PUMP Charge pump current limit 1X Gain, output referred 3 V ≤ VIN ≤ 5.5 V 180 350 mA
2X Gain TA = 25°C 240
ROUT Charge pump output resistance 1X Gain TA = 25°C 1.1 Ω
HWEN INPUT
VHWEN_L Logic low 2.7 V ≤ VIN ≤ 5.5 V 0 0.4 V
VHWEN_H Logic High 2.7 V ≤ VIN ≤ 5.5 V 1.2 VIN
PWM INPUT
VPWM_L Input logic low 2.7 V ≤ VIN ≤ 5.5 V 0 400 mV
VPWM_H Input logic high 2.7 V ≤ VIN ≤ 5.5 V 1.36 VIN
tPWM Minimum PWM input pulse 2.7 V ≤ VIN ≤ 5.5 V, PWM Zero Detect Enabled 0.75 µs
I2C-COMPATIBLE VOLTAGE SPECIFICATIONS (SCL, SDA)
VIL Input logic low 2.7 V ≤ VIN ≤ 5.5 V 0 400 mV
VIH Input logic high 2.7 V ≤ VIN ≤ 5.5 V 1.35 VIN V
VOL Output logic low (SDA) 2.7 V ≤ VIN ≤ 5.5 V, ILOAD = 3 mA 400 mV
(1) All voltages are with respect to the potential at the GND pin.
(2) Minimum and Maximum limits are verified by design, test, or statistical analysis. Typical (Typ) numbers are not verified, but do represent the most likely norm. Unless otherwise specified, conditions for typical specifications are: VIN = 3.6 V and TA = 25°C.
(3) LED current sink matching in the high-voltage current sinks (HVLED1 through HVLED3) is given as the maximum matching value between any two current sinks, where the matching between any two high voltage current sinks (X and Y) is given as (IHVLEDX ( or IHVLEDY) - IAVE(X-Y))/(IAVE(X-Y)) x 100. In this test all three HVLED current sinks are assigned to Bank A.
(4) LED current sink matching in the low-voltage current sinks (LVLED1 through LVLED3 or LVLED4 through LVLED6) is given as the maximum matching value between any two current sinks, where the matching between any two low voltage current sinks (X and Y) is given as (ILVLEDX ( or ILVLEDY) - IAVE(X-Y))/(IAVE(X-Y)) x 100. In this test LVLED1-3 current sinks are assigned to Bank C and LVLED4-6 are assigned to Bank F.

6.6 Timing Requirements

Limits apply over the full operating ambient temperature range (−40°C ≤ TA ≤ 85°C) and VIN = 3.6 V, unless otherwise specified.(1)(2)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
I2C-COMPATIBLE TIMING SPECIFICATIONS (SCL, SDA)(3), Figure 1
t1 SCL (Clock Period) 2.7 V ≤ VIN ≤ 5.5 V 2.5 µs
t2 Data In setup time to SCL high 2.7 V ≤ VIN ≤ 5.5 V 100 ns
t3 Data out stable after SCL low 2.7 V ≤ VIN ≤ 5.5 V 0
t4 SDA low setup time to SCL low (Start) 2.7 V ≤ VIN ≤ 5.5 V 100
t5 SDA high hold time after SCL high (Stop) 2.7 V ≤ VIN ≤ 5.5 V 100
INTERNAL POR THRESHOLD AND HWEN TIMING SPECIFICATION
VPOR POR reset release voltage threshold VIN ramp time = 100 μs 1.7 2.1 V
VIN ramp time = 100 μs, TA = 25°C 1.9
tHWEN First I2C start pulse after HWEN high POR reset complete, 2.7 V ≤ VIN ≤ 5.5 V 20 µs
POR reset complete, TA = 25°C 5
(1) All voltages are with respect to the potential at the GND pin.
(2) Minimum and Maximum limits are verified by design, test, or statistical analysis. Typical (Typ) numbers are not verified, but do represent the most likely norm. Unless otherwise specified, conditions for typical specifications are: VIN = 3.6 V and TA = 25°C.
(3) SCL and SDA must be glitch-free in order for proper brightness control to be realized.
30200389.gifFigure 1. I2C-Compatible Interface Timing

6.7 Typical Characteristics

C062_SNVS867.pngFigure 2. NMOS RDSON vs Temperature
C068_SNVS867.pngFigure 4. Boost OCP vs Temperature
C065_SNVS867.pngFigure 6. Charge Pump ROUT vs Temperature
C060_SNVS867.pngFigure 8. Charge Pump 2X Mode VCPOUT vs Temperature
C066_SNVS867.pngFigure 10. PWM VIH vs Temperature
C061_SNVS867.pngFigure 3. Shutdown IQ vs Temperature
C063_SNVS867.pngFigure 5. VHR_HV vs Temperature
C069_SNVS867.pngFigure 7. Low Voltage LED VGTH vs Temperature
C064_SNVS867.pngFigure 9. VHR_LV vs Temperature
C067_SNVS867.pngFigure 11. PWM VIL vs Temperature