SLVSES8A October   2020  – December 2020 LM5127-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Device Enable (EN, VCC_HOLD)
      2. 8.3.2  Dual Input VCC Regulator (BIAS, VCCX, VCC)
      3. 8.3.3  Dual Input VDD Switch (VDD, VDDX)
      4. 8.3.4  Device Configuration and Light Load Switching Mode Selection (CFG/MODE)
      5. 8.3.5  Fixed or Adjustable Output Regulation Target (VOUT, FB)
      6. 8.3.6  Overvoltage Protection (VOUT, FB)
      7. 8.3.7  Power Good Indicator (PGOOD)
      8. 8.3.8  Programmable Switching Frequency (RT)
      9. 8.3.9  External Clock Synchronization (SYNC)
      10. 8.3.10 Programmable Spread Spectrum (DITHER)
      11. 8.3.11 Programmable Soft Start (SS)
      12. 8.3.12 Fast Re-start using VCC_HOLD (VCC_HOLD)
      13. 8.3.13 Transconductance Error Amplifier and PWM (COMP)
      14. 8.3.14 Current Sensing and Slope Compensation (CSA, CSB)
      15. 8.3.15 Constant Peak Current Limit (CSA, CSB)
      16. 8.3.16 Maximum Duty Cycle and Minimum Controllable On-time Limits (Boost)
      17. 8.3.17 Bypass Mode (Boost)
      18. 8.3.18 Minimum Controllable On-time and Minimum Controllable Off-time Limits (Buck)
      19. 8.3.19 Low Dropout Mode for Extended Minimum Input Voltage (Buck)
      20. 8.3.20 Programmable Hiccup Mode Overload Protection (RES)
      21. 8.3.21 MOSFET Drivers and Hiccup Mode Fault Protection (LO, HO, HB)
      22. 8.3.22 Battery Monitor (BMOUT, BMIN_FIX, BMIN_PRG)
      23. 8.3.23 Dual-phase Interleaved Configuration for High Current Supply (CFG)
      24. 8.3.24 Thermal Shutdown Protection
      25. 8.3.25 External VCCX Supply Reduces Power Dissipation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device Status
        1. 8.4.1.1 Shutdown Mode
        2. 8.4.1.2 Configuration Mode
        3. 8.4.1.3 Active Mode
        4. 8.4.1.4 Sleep Mode
        5. 8.4.1.5 Deep Sleep Mode
          1. 8.4.1.5.1 Cutting Leakage Path in Deep Sleep Mode (DIS, SLEEP1, SENSE1)
        6. 8.4.1.6 VCC HOLD Mode
      2. 8.4.2 Light Load Switching Mode
        1. 8.4.2.1 Forced PWM (FPWM) Operation
        2. 8.4.2.2 Diode Emulation (DE) Operation (Connect RSS at SS)
        3. 8.4.2.3 Forced Diode Emulation Operation in FPWM Mode
        4. 8.4.2.4 Skip Mode Operation
      3. 8.4.3 LM5127 Cheat Sheet
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Recommended Power Tree Architecture
        2. 9.2.2.2 Application Ideas
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
      2. 12.1.2 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Application Ideas

For applications requiring the lowest cost with minimum conduction loss, inductor DC resistance (DCR) can be used to sense the inductor current rather than using a sense resistor. RDCRC and CDCRC must meet Equation 23 to match the time constant.

GUID-643793D0-0758-47B5-A4BC-93D3BCE0E800-low.gifFigure 9-2 DCR Current Sensing (a) Buck, (b) Boost
Equation 23. GUID-DAA7A528-FF3F-4060-AF59-692CE179CCA4-low.gif

When CH1 is used as a pre-boost, the output undershoot during a cold-cranking event can be minimized by adding an R-C in parallel with the low-side feedback resistor. A lower value of ROS will result in a lower output undershoot (see Figure 9-3). The COS value should be large enough not to affect loop response in normal operation. Use 20-kΩ and 4.7-nF combination as a starting point and then adjust the values if required.

GUID-85B30494-9595-4A90-8636-3803DBAC2656-low.gifFigure 9-3 VOUT Boost Circuit

The light load switching mode can be dynamically programmed during operation between FPWM and DE mode.

GUID-842FB04B-C84C-4FFA-9911-3F2B98B023C5-low.gifFigure 9-4 Dynamic Transition Between FPWM and DE

If required, an additional PGOOD or BMOUT delay can be programmed using an external circuit.

GUID-BC920DD3-36DD-48B9-9362-D1CD5E375473-low.gifFigure 9-5 Additional PGOOD / BMOUT Delay

Sequential start-up can be realized by using the PGOOD pins.

GUID-22603D1F-714E-42C1-A5F8-C1D7FB63A7BB-low.gifFigure 9-6 Sequential Start-up

Switching can be stopped individually by pulling down the SS pins.

GUID-5939EB17-BA1A-47E2-9D8F-F3E64CCC145D-low.gifFigure 9-7 Stop Switching using SS Pin