SNVSBU4E June   2022  – August 2024 LM5177

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Handling Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Gate Driver Rise Time and Fall Time
    2. 6.2 Gate Driver Dead (Transition) Time
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Power-On Reset (POR System)
      2. 7.3.2  Buck-Boost Control Scheme
        1. 7.3.2.1 Boost Mode
        2. 7.3.2.2 Buck Mode
        3. 7.3.2.3 Buck-Boost Mode
      3. 7.3.3  Power Save Mode
      4. 7.3.4  Supply Voltage Selection – VMAX Switch
      5. 7.3.5  Enable and Undervoltage Lockout
      6. 7.3.6  Oscillator Frequency Selection
      7. 7.3.7  Frequency Synchronization
      8. 7.3.8  Voltage Regulation Loop
      9. 7.3.9  Output Voltage Tracking
      10. 7.3.10 Slope Compensation
      11. 7.3.11 Configurable Soft Start
      12. 7.3.12 Peak Current Sensor
      13. 7.3.13 Current Monitoring and Current Limit Control Loop
      14. 7.3.14 Short Circuit - Hiccup Protection
      15. 7.3.15 nFLT Pin and Protections
      16. 7.3.16 Device Configuration Pin
      17. 7.3.17 Dual Random Spread Spectrum – DRSS
      18. 7.3.18 Gate Driver
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design with WEBENCH Tools
        2. 8.2.2.2  Frequency
        3. 8.2.2.3  Feedback Divider
        4. 8.2.2.4  Inductor and Current Sense Resistor Selection
        5. 8.2.2.5  Slope Compensation
        6. 8.2.2.6  Output Capacitor
        7. 8.2.2.7  Input Capacitor
        8. 8.2.2.8  UVLO Divider
        9. 8.2.2.9  Soft-Start Capacitor
        10. 8.2.2.10 MOSFETs QH1 and QL1
        11. 8.2.2.11 MOSFETs QH2 and QL2
        12. 8.2.2.12 Frequency Compensation
        13. 8.2.2.13 External Component Selection
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
      1. 8.3.1 Bi-Directional Power Backup
      2. 8.3.2 Parallel (Multiphase) Operation
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Power Stage Layout
      2. 10.1.2 Gate Driver Layout
      3. 10.1.3 Controller Layout
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design with WEBENCH Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Stage Layout

Input capacitors, output capacitors, and MOSFETs are the constituent components of the power stage of the buck-boost regulator and are typically placed on the top side of the PCB. The benefits of convective heat transfer are maximized when leveraging any system-level airflow. In a two-sided PCB layout, small-signal components are typically placed on the bottom side. Insert at least one inner plane, connected to ground, to shield, and isolate the small-signal traces from noisy power traces.

The DC/DC regulator has several high-current loops. Minimize the area of these loops to suppress generated switching noise and optimize switching performance.

  • The most important loop areas to minimize are the path from the input capacitors through the buck high-side and low-side MOSFETs, and back to the ground connection of the input capacitor and the path from the output capacitors through the boost high-side and low-side MOSFETs, and back to the ground connection of the output capacitor. Connect the negative terminal of the capacitor close to the source of the low-side MOSFETs (at ground). Similarly, connect the positive terminal of the capacitor or capacitors close to the drain of the high-side MOSFETs of both loops.
  • In addition to these recommendations, follow any layout considerations of the MOSFETs as recommended by the MOSFET manufacturer, including pad geometry and solder paste stencil design.