SNVSC22B October   2023  – June 2024 LM51772

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Handling Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Buck-Boost Control Scheme
        1. 7.3.1.1 Buck Mode
        2. 7.3.1.2 Boost Mode
        3. 7.3.1.3 Buck-Boost Mode
      2. 7.3.2  Power Save Mode
      3. 7.3.3  Programmable Conduction Mode PCM
      4. 7.3.4  Reference System
        1. 7.3.4.1 VIO LDO and nRST-PIN
      5. 7.3.5  Supply Voltage Selection – VSMART Switch and Selection Logic
      6. 7.3.6  Enable and Undervoltage Lockout
        1. 7.3.6.1 UVLO
        2. 7.3.6.2 VDET Comparator
      7. 7.3.7  Internal VCC Regulators
        1. 7.3.7.1 VCC1 Regulator
        2. 7.3.7.2 VCC2 Regulator
      8. 7.3.8  Error Amplifier and Control
        1. 7.3.8.1 Output Voltage Regulation
        2. 7.3.8.2 Output Voltage Feedback
        3. 7.3.8.3 Voltage Regulation Loop
        4. 7.3.8.4 Dynamic Voltage Scaling
      9. 7.3.9  Output Voltage Discharge
      10. 7.3.10 Peak Current Sensor
      11. 7.3.11 Short Circuit - Hiccup Protection
      12. 7.3.12 Current Monitor/Limiter
        1. 7.3.12.1 Overview
        2. 7.3.12.2 Output Current Limitation
        3. 7.3.12.3 Output Current Monitor
      13. 7.3.13 Oscillator Frequency Selection
      14. 7.3.14 Frequency Synchronization
      15. 7.3.15 Output Voltage Tracking
        1. 7.3.15.1 Analog Voltage Tracking
        2. 7.3.15.2 Digital Voltage Tracking
      16. 7.3.16 Slope Compensation
      17. 7.3.17 Configurable Soft Start
      18. 7.3.18 Drive Pin
      19. 7.3.19 Dual Random Spread Spectrum – DRSS
      20. 7.3.20 Gate Driver
      21. 7.3.21 Cable Drop Compensation (CDC)
      22. 7.3.22 CFG-pin and R2D Interface
      23. 7.3.23 Advanced Monitoring Features
        1. 7.3.23.1  Overview
        2. 7.3.23.2  BUSY
        3. 7.3.23.3  OFF
        4. 7.3.23.4  VOUT
        5. 7.3.23.5  IOUT
        6. 7.3.23.6  INPUT
        7. 7.3.23.7  TEMPERATURE
        8. 7.3.23.8  CML
        9. 7.3.23.9  OTHER
        10. 7.3.23.10 ILIM_OP
        11. 7.3.23.11 nFLT/nINT Pin Output
        12. 7.3.23.12 Status Byte
      24. 7.3.24 Protection Features
        1. 7.3.24.1  Thermal Shutdown (TSD)
        2. 7.3.24.2  Over Current Protection
        3. 7.3.24.3  Output Over Voltage Protection 1 (OVP1)
        4. 7.3.24.4  Output Over Voltage Protection 2 (OVP2)
        5. 7.3.24.5  Input Voltage Protection (IVP)
        6. 7.3.24.6  Input Voltage Regulation (IVR)
        7. 7.3.24.7  Power Good
        8. 7.3.24.8  Boot-Strap Under Voltage Protection
        9. 7.3.24.9  Boot-strap Over Voltage Clamp
        10. 7.3.24.10 CRC - CHECK
    4. 7.4 Device Functional Modes
      1. 7.4.1 Overview
      2. 7.4.2 Logic State Description
    5. 7.5 Programming
      1. 7.5.1 I2C Bus Operation
      2. 7.5.2 Clock Stretching
      3. 7.5.3 Data Transfer Formats
      4. 7.5.4 Single READ from a Defined Register Address
      5. 7.5.5 Sequential READ Starting from a Defined Register Address
      6. 7.5.6 Single WRITE to a Defined Register Address
      7. 7.5.7 Sequential WRITE Starting at a Defined Register Address
  9. LM51772 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Custom Design with WEBENCH Tools
        2. 9.2.2.2  Frequency
        3. 9.2.2.3  Feedback Divider
        4. 9.2.2.4  Inductor and Current Sense Resistor Selection
        5. 9.2.2.5  Output Capacitor
        6. 9.2.2.6  Input Capacitor
        7. 9.2.2.7  Slope Compensation
        8. 9.2.2.8  UVLO Divider
        9. 9.2.2.9  Soft-Start Capacitor
        10. 9.2.2.10 MOSFETs QH1 and QL1
        11. 9.2.2.11 MOSFETs QH2 and QL2
        12. 9.2.2.12 Loop Compensation
        13. 9.2.2.13 External Component Selection
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Power Stage Layout
        2. 9.4.1.2 Gate Driver Layout
        3. 9.4.1.3 Controller Layout
      2. 9.4.2 Layout Example
    5. 9.5 USB-PD Source with Power Path
    6. 9.6 Parallel (Multiphase) Operation
    7. 9.7 Constant Current LED Driver
    8. 9.8 Wireless Charging Supply
    9. 9.9 Bi-Directional Power Backup
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Current Limitation

In this configuration the current sense has an internal feedback to the peak current limit of the device. The ILIM circuit regulates the ILIMCOMP voltage to V(ISET), and overrides the voltage loop regulation.

the peak current limit down as long as the differential voltage between ISNSP and ISNSN exceeds the internal offset voltage of the ILIM circuit. The ILIM threshold can be set via the register programming or via the an ISET resistor in the ILIMCOMP pin.

If the current limit threshold is selected by a resistor the regulation overwrites the voltage loop once V(ISET) is increasing to the threshold voltage (typ. 1V). The threshold voltage for ISET can be calculated with:

Equation 15. V ( ISET ) = ( V ( I S N S P ) - V ( I S N S N ) ) g m ( ILIMCOMP ) R ( ILIMCOMP )

Hence the resistor value to select the current limit threshold voltage calculates with:

Equation 16. R ( I S E T ) =   V ( I S E T )   ( V I S N S P   -   V I S N S N )   g m ( I L I M C O M P )

For high frequency noise suppression a capacitor based on the following equation should be placed in parallel to R(ISET)

Equation 17. C ( I S E T ) =   1   π   f ( S W ) R ( I S E T )

If the threshold for the current limit is programmed by the internal DAC the bandwidth of the current limit control loop can be optimized for different loads with a resistor and capacitor network on the ILIMCOMP pin. A simple integrator compensation for resistive loads can be selected according the following equations:

Equation 18. CO2=52πfbwR(LOAD)

Where CO2 is the capacitance after the average current sense resistor R(SNS)

fbw is the bandwidth of the voltage loop compensation (see Voltage Regulation Loop)

Equation 19. C O 1   = C O   -   C O 2  

Where CO is the total output capacitance determined by the voltage loop calculation and the applications voltage ripple requirement.

Where CO1 is the capacitance before the average current sense resistor R(SNS)

Equation 20. fp=12πR(SNS)CO2
Equation 21. f b w i l i m = f p 10 - 0.25
Equation 22. C(ILIMCOMP)=gm(ILIMCOMP)2πfbwilim
LM51772 Simplified Schematic current
                    limit components with resistive load Figure 7-23 Simplified Schematic current limit components with resistive load

For a electronic load (CC-mode CR-mode) a type II compensation network might be necessary to adopt to the internal regulation loop and bandwidth of the used electronic load. Please refer to the Quick Start Calculator Tool for more detailed optimization.

If the current limit threshold is selected by a resistor instead of the internal DAC the regulation overwrites the voltage loop once V(ISET) is increasing to the threshold voltage (typ. 1V). The threshold voltage for ISET can be calculated with:

Equation 23. V ( ISET ) = ( V ( I S N S P ) - V ( I S N S N ) ) g m ( ILIMCOMP ) R ( ISET )

Hence the resistor value to select the current limit threshold voltage calculates with:

Equation 24. R ( I S E T ) =   V ( I S E T )   ( V I S N S P   -   V I S N S N )   g m ( I L I M C O M P )

For high frequency noise suppression a capacitor based on the following equation should be placed in parallel to R(ISET)

Equation 25. C(ISET)= 1 π f(SW)R(ISET)

The read-out register value of the ''ILIM_THRESHOLD" control register is clamped for the lower and for the upper limit of the register range.

  • The reg. readout value is clamped to the lowest clamp current ( e.g. 500mA) if a register value below the value of clamp current been written in before.
  • The reg. readout value is clamped to the highest clamp current if a register value above the highest value of clamp current has been written in before.