SNVSC22B October   2023  – June 2024 LM51772

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Handling Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Buck-Boost Control Scheme
        1. 7.3.1.1 Buck Mode
        2. 7.3.1.2 Boost Mode
        3. 7.3.1.3 Buck-Boost Mode
      2. 7.3.2  Power Save Mode
      3. 7.3.3  Programmable Conduction Mode PCM
      4. 7.3.4  Reference System
        1. 7.3.4.1 VIO LDO and nRST-PIN
      5. 7.3.5  Supply Voltage Selection – VSMART Switch and Selection Logic
      6. 7.3.6  Enable and Undervoltage Lockout
        1. 7.3.6.1 UVLO
        2. 7.3.6.2 VDET Comparator
      7. 7.3.7  Internal VCC Regulators
        1. 7.3.7.1 VCC1 Regulator
        2. 7.3.7.2 VCC2 Regulator
      8. 7.3.8  Error Amplifier and Control
        1. 7.3.8.1 Output Voltage Regulation
        2. 7.3.8.2 Output Voltage Feedback
        3. 7.3.8.3 Voltage Regulation Loop
        4. 7.3.8.4 Dynamic Voltage Scaling
      9. 7.3.9  Output Voltage Discharge
      10. 7.3.10 Peak Current Sensor
      11. 7.3.11 Short Circuit - Hiccup Protection
      12. 7.3.12 Current Monitor/Limiter
        1. 7.3.12.1 Overview
        2. 7.3.12.2 Output Current Limitation
        3. 7.3.12.3 Output Current Monitor
      13. 7.3.13 Oscillator Frequency Selection
      14. 7.3.14 Frequency Synchronization
      15. 7.3.15 Output Voltage Tracking
        1. 7.3.15.1 Analog Voltage Tracking
        2. 7.3.15.2 Digital Voltage Tracking
      16. 7.3.16 Slope Compensation
      17. 7.3.17 Configurable Soft Start
      18. 7.3.18 Drive Pin
      19. 7.3.19 Dual Random Spread Spectrum – DRSS
      20. 7.3.20 Gate Driver
      21. 7.3.21 Cable Drop Compensation (CDC)
      22. 7.3.22 CFG-pin and R2D Interface
      23. 7.3.23 Advanced Monitoring Features
        1. 7.3.23.1  Overview
        2. 7.3.23.2  BUSY
        3. 7.3.23.3  OFF
        4. 7.3.23.4  VOUT
        5. 7.3.23.5  IOUT
        6. 7.3.23.6  INPUT
        7. 7.3.23.7  TEMPERATURE
        8. 7.3.23.8  CML
        9. 7.3.23.9  OTHER
        10. 7.3.23.10 ILIM_OP
        11. 7.3.23.11 nFLT/nINT Pin Output
        12. 7.3.23.12 Status Byte
      24. 7.3.24 Protection Features
        1. 7.3.24.1  Thermal Shutdown (TSD)
        2. 7.3.24.2  Over Current Protection
        3. 7.3.24.3  Output Over Voltage Protection 1 (OVP1)
        4. 7.3.24.4  Output Over Voltage Protection 2 (OVP2)
        5. 7.3.24.5  Input Voltage Protection (IVP)
        6. 7.3.24.6  Input Voltage Regulation (IVR)
        7. 7.3.24.7  Power Good
        8. 7.3.24.8  Boot-Strap Under Voltage Protection
        9. 7.3.24.9  Boot-strap Over Voltage Clamp
        10. 7.3.24.10 CRC - CHECK
    4. 7.4 Device Functional Modes
      1. 7.4.1 Overview
      2. 7.4.2 Logic State Description
    5. 7.5 Programming
      1. 7.5.1 I2C Bus Operation
      2. 7.5.2 Clock Stretching
      3. 7.5.3 Data Transfer Formats
      4. 7.5.4 Single READ from a Defined Register Address
      5. 7.5.5 Sequential READ Starting from a Defined Register Address
      6. 7.5.6 Single WRITE to a Defined Register Address
      7. 7.5.7 Sequential WRITE Starting at a Defined Register Address
  9. LM51772 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Custom Design with WEBENCH Tools
        2. 9.2.2.2  Frequency
        3. 9.2.2.3  Feedback Divider
        4. 9.2.2.4  Inductor and Current Sense Resistor Selection
        5. 9.2.2.5  Output Capacitor
        6. 9.2.2.6  Input Capacitor
        7. 9.2.2.7  Slope Compensation
        8. 9.2.2.8  UVLO Divider
        9. 9.2.2.9  Soft-Start Capacitor
        10. 9.2.2.10 MOSFETs QH1 and QL1
        11. 9.2.2.11 MOSFETs QH2 and QL2
        12. 9.2.2.12 Loop Compensation
        13. 9.2.2.13 External Component Selection
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Power Stage Layout
        2. 9.4.1.2 Gate Driver Layout
        3. 9.4.1.3 Controller Layout
      2. 9.4.2 Layout Example
    5. 9.5 USB-PD Source with Power Path
    6. 9.6 Parallel (Multiphase) Operation
    7. 9.7 Constant Current LED Driver
    8. 9.8 Wireless Charging Supply
    9. 9.9 Bi-Directional Power Backup
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Voltage Feedback

For applications with external feedback divider use a resistive divider network from the output capacitance to the FB-pin. Use the following equation to calculate the resistor values.

Equation 1. R F B , t o p = ( V ( VOUT ) - V REF ) × R F B , b o t

To maintain fixed voltage and interface programmable voltage the device contains an internal voltage divider. In this case the FB is not used for sensing the output voltage for the loop regulation. Instead the VOUT-pin is used to sense the output voltage on the power stage.

The selection between internal and external feedback divider is done through the FB pin. If the voltage on the FB-pin is higher than VT+(SEL,iFB), before the soft-start is initiated, the device will operate with a internal or external feedback. The selection of internal and external FB cannot be done dynamically and the pin information gets latched until the next EN or V(POR) power cycle. A typical way of selecting the internal feedback divider is to connect it to VCC2 before the EN pin gets pulled high

The ratio of the internal feedback divider can be changed with the SEL_DIV20 bit. (see Table 8-18)

It is recommended to (re-)write VOUT_A after changing SEL_DIV20 bit.

Below an overview of the possible Vo setting according the VOUT_A and SEL_DIV20

Table 7-2 SEL_DIV 20 = 0b0
Parameter Value
Output voltage min. 1.0V
Output voltage max. 24V
Output voltage programming step size typ. 10mV

You can use the following equation to calculate the nominal output voltage:

Equation 2. V ( O , N O M ) = V O U T _ T A R G E T 1 _ M S B 3 : 0 V O U T _ T A R G E T 1 _ L S B 7 : 0     10   m V
Table 7-3 SEL_DIV 20 = 0b1
ParameterValue
Output voltage min. 3.3V
Output voltage max48V
Output voltage programming step size typ.20mV

The read-out register value of the 'VOUT_A' control register is clamped for the lower and for the upper limit of the register range.

  • The reg. readout value is clamped to the lowest clamp voltage ( e.g. 3.3V if SEL_FB_DIV20 = 0b1) if a register value below the value of clamp voltage ( e.g. 3.3V) has been written in before.
  • The reg. readout value is clamped to the highest clamp voltage ( e.g. 48V if SEL_FB_DIV20 = 0b1) if a register value above the highest value of clamp voltage ( e.g. 48V) has been written in before.

You can use the following equation to calculate the nominal output voltage:

Equation 3. V ( O , N O M ) = V O U T _ T A R G E T 1 _ M S B 3 : 0 V O U T _ T A R G E T 1 _ L S B 7 : 0     20   m V
LM51772 EA Functions Block
                    Diagram Figure 7-19 EA Functions Block Diagram