SNIS139F February   2005  – January 2024 LM95231

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Operating Ratings
    3. 5.3 Temperature-to-Digital Converter Characteristics
    4. 5.4 Logic Electrical Characteristics Digital DC Characteristics
    5. 5.5 Logic Electrical Characteristics SMBus Digital Switching Characteristics
    6. 5.6 Typical Performance Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Conversion Sequence
      2. 6.3.2 Power-On-Default States
      3. 6.3.3 SMBus Interface
      4. 6.3.4 Temperature Data Format
      5. 6.3.5 SMBDAT Open-Drain Output
      6. 6.3.6 Diode Fault Detection
      7. 6.3.7 Communicating with the LM95231
      8. 6.3.8 Serial Interface Reset
      9. 6.3.9 One-Shot Conversion
  8. Registers
    1. 7.1 LM95231 Registers
    2. 7.2 Status Register
    3. 7.3 Configuration Register
    4. 7.4 Remote Diode Filter Control Register
    5. 7.5 Remote Diode Model Type Select Register
    6. 7.6 Remote TruTherm Mode Control
    7. 7.7 Local and Remote MSB and LSB Temperature Registers
      1. 7.7.1 Local Temperature MSB
      2. 7.7.2 Local Temperature LSB
      3. 7.7.3 Remote Temperature MSB
      4. 7.7.4 Remote Temperature LSB
    8. 7.8 Manufacturers ID Register
    9. 7.9 Die Revision Code Register
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Diode Non-Ideality
        1. 8.2.1.1 Diode Non-Ideality Factor Effect on Accuracy
        2. 8.2.1.2 Calculating Total System Accuracy
        3. 8.2.1.3 Compensating for Different Non-Ideality
  10. Layout
    1. 9.1 PCB Layout for Minimizing Noise
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Compensating for Different Non-Ideality

In order to compensate for the errors introduced by non-ideality, the temperature sensor is calibrated for a particular processor. Texas Instruments temperature sensors are always calibrated to the typical non-ideality and series resistance of a given processor type. The LM95231 is calibrated for two non-ideality factors and series resistance values thus supporting the MMBT3904 transistor and the Pentium 4 processor on 90nm process without the requirement for additional trims. For most accurate measurements TruTherm mode should be turned on when measuring the Pentium 4 processor on the 90nm process to minimize the error introduced by the false non-ideality spread (see Section 8.2.1.1). When a temperature sensor calibrated for a particular processor type is used with a different processor type, additional errors are introduced.

Temperature errors associated with non-ideality of different processor types may be reduced in a specific temperature range of concern through use of software calibration. Typical Non-ideality specification differences cause a gain variation of the transfer function, therefore the center of the temperature range of interest should be the target temperature for calibration purposes. The following equation can be used to calculate the temperature correction factor (TCF) required to compensate for a target non-ideality differing from that supported by the LM95231.

Equation 10. TCF = [(ηS−ηProcessor) ÷ ηS] × (TCR+ 273 K)

where

  • ηS = LM95231 non-ideality for accuracy specification
  • ηT = target thermal diode typical non-ideality
  • TCR = center of the temperature range of interest in °C

The correction factor of Equation 10 should be directly added to the temperature reading produced by the LM95231. For example when using the LM95231, with the 3904 mode selected, to measure a AMD Athlon processor, with a typical non-ideality of 1.008, for a temperature range of 60 °C to 100 °C the correction factor would calculate to:

Equation 11. TCF=[(1.003−1.008)÷1.003]×(80+273) =−1.75°C

Therefore, 1.75°C should be subtracted from the temperature readings of the LM95231 to compensate for the differing typical non-ideality target.