SNOSDL1 December   2024 LMG3650R035

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
  8. Parameter Measurement Information
    1. 7.1 Switching Parameters
      1. 7.1.1 Turn-On Times
      2. 7.1.2 Turn-Off Times
      3. 7.1.3 Drain-Source Turn-On and Turn-off Slew Rate
      4. 7.1.4 Zero-Voltage Detection Times (LMG3656R035 only)
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
      1. 8.2.1 LMG3650R035 Functional Block Diagram
      2. 8.2.2 LMG3651R035 Functional Block Diagram
      3. 8.2.3 LMG3656R035 Functional Block Diagram
      4. 8.2.4 LMG3657R035 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Drive Strength Adjustment
      2. 8.3.2 VDD Supply
      3. 8.3.3 Overcurrent and Short-Circuit Protection
      4. 8.3.4 Overtemperature Protection
      5. 8.3.5 UVLO Protection
      6. 8.3.6 Fault Reporting
      7. 8.3.7 Auxiliary LDO (LMG3651R035 Only)
      8. 8.3.8 Zero-Voltage Detection (ZVD) (LMG3656R035 Only)
      9. 8.3.9 Zero-Current Detection (ZCD) (LMG3657R035 Only)
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Slew Rate Selection
        2. 9.2.2.2 Signal Level-Shifting
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Using an Isolated Power Supply
      2. 9.3.2 Using a Bootstrap Diode
        1. 9.3.2.1 Diode Selection
        2. 9.3.2.2 Managing the Bootstrap Voltage
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
  • KLA|9
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Auxiliary LDO (LMG3651R035 Only)

There is a 5V voltage regulator inside the part used to supply external loads, such as digital isolators for the high-side drive signal. The digital outputs of the part use this rail as their supply. No capacitor is required for stability, but transient response is poor if no external capacitor is provided. If the application uses this rail to supply external circuits, TI recommends to have a capacitor of at least 0.1μF for improved transient response. A larger capacitor can be used for further transient response improvement. The decoupling capacitor used here must be a low-ESR ceramic type. Capacitances above 0.47μF will slow down the start-up time of the LMG365xR035 due to the ramp-up time of the 5V rail.