SNOSDL1 December   2024 LMG3650R035

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
  8. Parameter Measurement Information
    1. 7.1 Switching Parameters
      1. 7.1.1 Turn-On Times
      2. 7.1.2 Turn-Off Times
      3. 7.1.3 Drain-Source Turn-On and Turn-off Slew Rate
      4. 7.1.4 Zero-Voltage Detection Times (LMG3656R035 only)
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
      1. 8.2.1 LMG3650R035 Functional Block Diagram
      2. 8.2.2 LMG3651R035 Functional Block Diagram
      3. 8.2.3 LMG3656R035 Functional Block Diagram
      4. 8.2.4 LMG3657R035 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Drive Strength Adjustment
      2. 8.3.2 VDD Supply
      3. 8.3.3 Overcurrent and Short-Circuit Protection
      4. 8.3.4 Overtemperature Protection
      5. 8.3.5 UVLO Protection
      6. 8.3.6 Fault Reporting
      7. 8.3.7 Auxiliary LDO (LMG3651R035 Only)
      8. 8.3.8 Zero-Voltage Detection (ZVD) (LMG3656R035 Only)
      9. 8.3.9 Zero-Current Detection (ZCD) (LMG3657R035 Only)
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Slew Rate Selection
        2. 9.2.2.2 Signal Level-Shifting
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Using an Isolated Power Supply
      2. 9.3.2 Using a Bootstrap Diode
        1. 9.3.2.1 Diode Selection
        2. 9.3.2.2 Managing the Bootstrap Voltage
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
  • KLA|9
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Application

LMG3650R035 LMG3651R035 LMG3656R035 LMG3657R035 LMG3650R035
                    Typical Half-Bridge Application With Isolated Power Supply Figure 9-1 LMG3650R035 Typical Half-Bridge Application With Isolated Power Supply
LMG3650R035 LMG3651R035 LMG3656R035 LMG3657R035 LMG3651R035
                    Typical Half-Bridge Application With Isolated Power Supply Figure 9-2 LMG3651R035 Typical Half-Bridge Application With Isolated Power Supply
LMG3650R035 LMG3651R035 LMG3656R035 LMG3657R035 LMG3656R035
                    or LMG3657R035 Typical Half-Bridge Application With Isolated
                    Power Supply Figure 9-3 LMG3656R035 or LMG3657R035 Typical Half-Bridge Application With Isolated Power Supply
LMG3650R035 LMG3651R035 LMG3656R035 LMG3657R035 LMG3650R035 Typical Half-Bridge Application With
                    Bootstrap Figure 9-4 LMG3650R035 Typical Half-Bridge Application With Bootstrap
LMG3650R035 LMG3651R035 LMG3656R035 LMG3657R035 LMG3651R035 Typical Half-Bridge Application With
                    Bootstrap Figure 9-5 LMG3651R035 Typical Half-Bridge Application With Bootstrap
LMG3650R035 LMG3651R035 LMG3656R035 LMG3657R035 LMG3656R035 or LMG3657R035 Typical
                    Half-Bridge Application With Bootstrap Figure 9-6 LMG3656R035 or LMG3657R035 Typical Half-Bridge Application With Bootstrap