SBOSA33A September   2021  – December 2021 LMH5485-SP

ADVANCE INFORMATION  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: VS+ – VS– = 5 V
    6. 7.6  Electrical Characteristics: VS+ – VS– = 3 V
    7. 7.7  Quality Conformance Inspection
    8. 7.8  Typical Characteristics: 5 V Single Supply
    9. 7.9  Typical Characteristics: 3 V Single Supply
    10. 7.10 Typical Characteristics: 3 V to 5 V Supply Range
  8. Parameter Measurement Information
    1. 8.1 Example Characterization Circuits
  9. Detailed Description
    1. 9.1 Overview
      1. 9.1.1 Terminology and Application Assumptions
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Differential I/O
      2. 9.3.2 Power-Down Control Pin (PD)
        1. 9.3.2.1 Operating the Power Shutdown Feature
      3. 9.3.3 Input Overdrive Operation
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operation from Single-Ended Sources to Differential Outputs
        1. 9.4.1.1 AC-Coupled Signal Path Considerations for Single-Ended Input to Differential Output Conversion
        2. 9.4.1.2 DC-Coupled Input Signal Path Considerations for Single-Ended to Differential Conversion
        3. 9.4.1.3 Resistor Design Equations for the Single-Ended to Differential Configuration of the FDA
        4. 9.4.1.4 Input Impedance for the Single-Ended to Differential FDA Configuration
      2. 9.4.2 Differential-Input to Differential-Output Operation
        1. 9.4.2.1 AC-Coupled, Differential-Input to Differential-Output Design Issues
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tube Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • HKX|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The LMH5485-SP is a radiation , low-power, voltage-feedback, fully differential amplifier (FDA) with an input common-mode range below the negative rail, and rail-to-rail output. Designed for power sensitive data acquisition systems where high density is critical in a high-performance analog-to-digital converter (ADC) or digital-to-analog converter (DAC) interface designs.

The LMH5485-SP features the negative-rail input required when interfacing a DC-coupled, ground-centered, source signal. This negative-rail input, with rail-to-rail output, allows for easy interface between single-ended, ground-referenced, bipolar signal sources and a wide variety of successive approximation register (SAR), delta-sigma (ΔΣ), or pipeline ADCs using only a single 2.7 V to 5.1 V power supply. LMH5485-SP also offers excellent DC precision for such ADC driving applications and is characterized for operation over the wide temperature range of –55°C to +125°C.

Device Information
PART NUMBER(1) GRADE PACKAGE
5962R1920401VXC Radiation hardness assured (RHA) Ceramic CFP
HKX (8)
6.5 mm × 6.5 mm
5962-1920401VXC QMLV
LMH5485HKX/EM Engineering samples(2)
For all available packages, see the package option addendum at the end of the data sheet.
These units are intended for engineering evaluation only. They are processed to a noncompliant flow. These units are not suitable for qualification, production, radiation testing or flight use. Parts are not warranted for performance over the full MIL specified temperature range of –55°C to 125°C or operating life.
GUID-20210126-CA0I-RN8T-4HZQ-RQ3HJDVZ8LWV-low.jpgSimplified Schematic
Single to Differential Gain of 2, 100-mVPP Output