SNOS957H April   2001  – August 2014 LMH6672

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 ±2.5V Electrical Characteristics
    7. 6.7 Typical Performance Characteristics
  7. Detailed Description
    1. 7.1 Functional Block Diagram
  8. Power Supply Recommendations
    1. 8.1 Thermal Management
  9. Device and Documentation Support
    1. 9.1 Trademarks
    2. 9.2 Electrostatic Discharge Caution
    3. 9.3 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VIN Differential ±1.2 V
Output Short Circuit Duration  See(2)
Supply Voltage (V+ − V) 13.2 V
Voltage at Input/Output pins V+ +0.8
V −0.8
V
Junction Temperature +150(3) °C
Soldering Information Infrared or Convection (20 sec) 235 °C
Wave Soldering (10 sec) 260 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range −65 +150 °C
V(ESD) Electrostatic discharge(1) Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 2 2000 V
Machine Model (MM)l(2) 200
(1) JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 200-V MM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply Voltage (V+ - V) ±2.5 ±6.5 V
Operating Temperature Range −40 150 °C

6.4 Thermal Information

THERMAL METRIC(1) SOIC
Package D
SO PowerPAD
Package DDA
UNIT
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 172 58.6 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise specified, all limits are ensured for G = +2, VS = ±2.5 to ±6V, RF = RIN = 470Ω, RL = 100Ω.
PARAMETER TEST CONDITIONS MIN(5) TYP(4) MAX(5) UNIT
DYNAMIC PERFORMANCE
−3dB Bandwidth 90 MHz
0.1dB Bandwidth VS = ±6V 12 MHz
Slew Rate VS = ±6V, 4V Step, 10-90% 135 V/μs
Rise and Fall Time VS = 6V, 4V Step, 10-90% 23.5 ns
DISTORTION and NOISE RESPONSE
2nd Harmonic Distortion VO = 8.4 VPP, f = 100 kHz, RL = 25Ω −105 dBc
VO = 8.4 VPP, f = 1 MHz, RL = 100Ω −90 dBc
3rd Harmonic Distortion VO = 8.4 VPP, f = 100 kHz, RL = 25Ω −110 dBc
VO = 8.4 VPP, f = 1 MHz, RL = 100Ω −87 dBc
Input Noise Voltage f = 100 kHz 3.1 nV√Hz
Input Noise Current f = 100 kHz 1.8 pA/√Hz
INPUT CHARACTERISTICS
VOS Input Offset Voltage TJ = −40°C to 125°C −5.5 0.1 5.5 mV
−4 −0.2 4
IB Input Bias Current TJ = −40°C to 125°C 8 16 µA
IOS Input Offset Current TJ = −40°C to 125°C −2.1 0 2.1 µA
CMVR Common Voltage Range VS = ±6V −6.0 −5.7 to 4.5 4.5 V
CMRR Common-Mode Rejection Ratio VS = ±6V, TJ = −40°C to 125°C 150 7.5 µV/V
TRANSFER CHARACTERISTICS
AVOL Voltage Gain RL = 1k, TJ = −40°C to 125°C 1.0 5 V/mV
RL = 25Ω, TJ = −40°C to 125°C 0.67 3.4 V/mV
VO Output Swing RL = 25Ω, VS = ±6V −4.5 ±4.8 4.5 V
RL = 25Ω, TJ = −40°C to 125°C,
VS = ±6V
−4.4 ±4.8 4.4
VO Output Swing RL = 1k, VS = ±6V −4.8 ±4.8 4.8 V
RL = 1k, TJ = −40°C to 125°C,
VS = ±6V
−4.7 ±4.8 4.7
ISC Output Current(2) VO = 0, VS = ±6V 350 525 mA
VO = 0, VS = ±6V,
TJ = −40°C to 125°C
260 600 mA
POWER SUPPLY
IS Supply Current/Amp VS = ±6V 8 mA
VS = ±6V, TJ = −40°C to 125°C 7.2 9
PSRR Power Supply Rejection Ratio VS = ±2.5V to ±6V,
TJ = −40°C to 125°C
72 88.5 dB

6.6 ±2.5V Electrical Characteristics

Unless otherwise specified, all limits are ensured for G = +2, VS = ±2.5 to ±6V, RF = RIN = 470Ω, RL = 100Ω.
PARAMETER TEST CONDITIONS MIN(5) TYP(4) MAX(5) UNIT
DYNAMIC PERFORMANCE
−3 dB Bandwidth 80 MHz
0.1 dB Bandwidth 12 MHz
Rise and Fall Time 2V Step, 10-90% 14 ns
DISTORTION and NOISE RESPONSE
2nd Harmonic Distortion VO = 2 VPP, f = 100 kHz, RL = 25Ω −96 dBc
VO = 2 VPP, f = 1 MHz, RL = 100Ω −85 dBc
3rd Harmonic Distortion VO = 2 VPP, f = 100 kHz, RL = 25Ω −98 dBc
VO = 2 VPP, f = 1 MHz, RL = 100Ω −87 dBc
INPUT CHARACTERISTICS
VOS Input Offset Voltage TJ = −40°C to 125°C −5.5 5.5 mV
−4.0 0.02 4.0
IB Input Bias Current TJ = −40°C to 125°C 8.0 16 µA
CMVR Common-Mode Voltage Range −2.5 1.0 V
CMRR Common-Mode Rejection Ratio TJ = −40°C to 125°C 150 8 µV/V
TRANSFER CHARACTERISTICS
AVOL Voltage Gain RL = 25Ω, TJ = −40°C to 125°C 0.67 3 V/mV
RL = 1k, TJ = −40°C to 125°C 1.0 4
OUTPUT CHARACTERISTICS
VO Output Voltage Swing RL = 25Ω 1.20 1.45 V
RL = 25Ω, TJ = −40°C to 125°C 1.10 1.35
RL = 1k 1.30 1.60
RL = 1k, TJ = −40°C to 125°C 1.25 1.50
POWER SUPPLY
IS Supply Current/Amp 8.0 mA
TJ = −40°C to 125°C 6.7 9.0
(1) Human body model, 1.5 kΩ in series with 100 pF. Machine model, 200 Ω in series with 100 pF.
(2) Shorting the output to either supply or ground will exceed the absolute maximum TJ and can result in failure.
(3) The maximum power dissipation is a function of TJ(MAX), RθJA and TA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) − TA)/RθJA. All numbers apply for packages soldered directly onto a PC board.
(4) Typical values represent the most likely parametric norm.
(5) All limits are specified by testing, characterization or statistical analysis.

6.7 Typical Performance Characteristics

Av = + 2V/V
20016635.gif
Figure 1. Output Swing RL = 25Ω, 1 kΩ @ −40°C, 25°C, 85°C
20016646.gif
Figure 3. Negative Output Swing into 1 kΩ
20016647.gif
Figure 5. Negative Output Swing into 25Ω
20016641.gif
Figure 7. −VOUT vs. ILOAD
20016642.gif
Figure 9. −VOUT vs. ILOAD
20016633.gif
Figure 11. Sourcing Current vs. Supply Voltage
20016629.gif
Figure 13. VOS vs. VS
20016630.gif
Figure 15. VOS vs. VCM, VS = 5V
20016637.gif
Figure 17. Offset Current vs. VSUPPLY
20016638.gif
Figure 19. VOUT vs. VIN
20016619.gif
Figure 21. Harmonic Distortion vs. Load
20016613.gif
Figure 23. Harmonic Distortion vs. Output Voltage
20016611.gif
Figure 25. Harmonic Distortion vs. Output Voltage
20016617.gif
Figure 27. Harmonic Distortion vs. Output Voltage
20016621.gif
Figure 29. Harmonic Distortion vs. Frequency
20016624.gif
Figure 31. Harmonic Distortion vs. Frequency
20016628.gif
Figure 33. Pulse Response, VS= ±2.5V, ±6V
20016625.gif
Figure 35. Pulse Response, AVCL = −1, VS= ±2.5V, ±6V
freq_response_13mhz_v2.gif
Figure 37. Frequency Response, AVCL = +5V/V
20016606.gif
Figure 39. CMRR vs. Frequency, Vs = 12V
20016608.gif
Figure 41. PSRR+ vs. Frequency, VS = 5V and 12V
20016610.gif
Figure 43. en & in vs. Frequency, VS = 5V and 12V
20016645.gif
Figure 2. Positive Output Swing into 1kΩ
20016644.gif
Figure 4. Positive Output Swing into 25Ω
20016640.gif
Figure 6. +VOUT vs. ILOAD
20016643.gif
Figure 8. +VOUT vs. ILOAD
20016632.gif
Figure 10. Supply Current vs. Supply Voltage
20016634.gif
Figure 12. Sinking Current vs. Supply Voltage
20016631.gif
Figure 14. VOS vs. VCM, VS = 12V
20016636.gif
Figure 16. Bias Current vs. VSUPPLY
20016639.gif
Figure 18. VOUT vs. VIN
20016620.gif
Figure 20. Harmonic Distortion vs. Load
20016614.gif
Figure 22. Harmonic Distortion vs. Output Voltage
20016612.gif
Figure 24. Harmonic Distortion vs. Output Voltage
20016615.gif
Figure 26. Harmonic Distortion vs. Output Voltage
20016622.gif
Figure 28. Harmonic Distortion vs. Frequency
20016623.gif
Figure 30. Harmonic Distortion vs. Frequency
20016627.gif
Figure 32. Pulse Response, VS= ±6V
20016626.gif
Figure 34. Pulse Response, AVCL = −1, VS= ±6V
freq_response_1db_div2.gif
Figure 36. Frequency Response
20016648.gif
Figure 38. Frequency Response, AVCL = +10V/V
20016605.gif
Figure 40. CMRR vs. Frequency, Vs = 5V
20016607.gif
Figure 42. PSRR− vs. Frequency VS = 5V and 12V