SNAS512J september   2011  – may 2023 LMK00301

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  9. Parameter Measurement Information
    1. 8.1 Differential Voltage Measurement Terminology
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 VCC and VCCO Power Supplies
    4. 9.4 Device Functional Modes
      1. 9.4.1 Clock Inputs
      2. 9.4.2 Clock Outputs
        1. 9.4.2.1 Reference Output
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
        1. 10.2.1.1 Driving the Clock Inputs
        2. 10.2.1.2 Crystal Interface
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Termination and Use of Clock Drivers
          1. 10.2.2.1.1 Termination for DC Coupled Differential Operation
          2. 10.2.2.1.2 Termination for AC Coupled Differential Operation
          3. 10.2.2.1.3 Termination for Single-Ended Operation
      3. 10.2.3 Application Curves
  12. 11Power Supply Recommendations
    1. 11.1 Power Supply Sequencing
    2. 11.2 Current Consumption and Power Dissipation Calculations
      1. 11.2.1 Power Dissipation Example #1: Separate VCC and VCCO Supplies with Unused Outputs
      2. 11.2.2 Power Dissipation Example #2: Worst-Case Dissipation
    3. 11.3 Power Supply Bypassing
      1. 11.3.1 Power Supply Ripple Rejection
    4. 11.4 Thermal Management
  13. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  14. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  15. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Dissipation Example #1: Separate VCC and VCCO Supplies with Unused Outputs

This example shows how to calculate IC power dissipation for a configuration with separate VCC and VCCO supplies and unused outputs. Because some outputs are not used, the ICCO_PECL value specified in Electrical Characteristics cannot be used directly, and output bank current (ICCO_BANK) should be calculated to accurately estimate the IC power dissipation.

  • VCC = 3.3 V, VCCOA = 3.3 V, VCCOB = 2.5 V. Typical ICC and ICCO values.
  • CLKin0/CLKin0* input is selected.
  • Bank A is configured for LVPECL: 4 pairs used with RT = 50 Ω to VT = VCCO – 2 V (1 pair unused).
  • Bank B is configured for LVDS: 3 pairs used with RL = 100 Ω differential (2 pairs unused).
  • REFout is disabled.
  • TA = 85°C

Using the current and power calculations from the previous section, we can compute PTOTAL and PDEVICE.

  • From Equation 6: ICC_TOTAL = 8.5 mA + 20 mA + 26 mA + 0 mA = 54.5 mA
  • From Table 11-1: IOUT_LOAD (LVPECL) = (1.6 V – 0.5 V) 50 Ω + (0.75 V – 0.5 V)/50 Ω = 27 mA
  • From Equation 7: ICCO_BANK_A = 33 mA + (4 × 27 mA) = 141 mA
  • From Equation 8: PTOTAL = (3.3 V × 54.5 mA) + (3.3 V × 141 mA) + (2.5 V × 34 mA)] = 730 mW
  • From Equation 9: PRT_PECL = ((2.4 V – 1.3 V)2/50 Ω) + ((1.55 V – 1.3 V)2/50 Ω) = 25.5 mW (per output pair)
  • From Equation 10: PVTT_PECL = 0.5 V × [ ((2.4 V – 1.3 V) / 50 Ω) + ((1.55 V – 1.3 V) / 50 Ω) ] = 13.5 mW (per output pair)
  • From Equation 11: PRT_HCSL = 0 mW (no HCSL outputs)
  • From Equation 12: PDEVICE = 730 mW – (4 × (25.5 mW + 13.5 mW)) – 0 mW = 574 mW

In this example, the IC device will dissipate about 574 mW or 79% of the total power (730 mW), while the remaining 21% will be dissipated in the emitter resistors (102 mW for 4 pairs) and termination voltage (54 mW into VCCO – 2 V).

Based on the thermal resistance junction-to-case (RθJA) of 28.5°C/W, the estimated die junction temperature would be about 16.4°C above ambient, or 101.4°C when TA = 85°C.