SNVS707G March   2011  – August 2016 LMZ23610

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Synchronization Input
      2. 7.3.2 Current Sharing
      3. 7.3.3 Output Overvoltage Protection
      4. 7.3.4 Current Limit
      5. 7.3.5 Thermal Protection
      6. 7.3.6 Prebiased Start-Up
        1. 7.3.6.1 Tracking Supply Divider Option
    4. 7.4 Device Functional Modes
      1. 7.4.1 Discontinuous Conduction and Continuous Conduction Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Design Steps
        2. 8.2.2.2 Enable Divider, RENT, RENB and RENHSelection
        3. 8.2.2.3 Output Voltage Selection
        4. 8.2.2.4 Soft-Start Capacitor Selection
        5. 8.2.2.5 COUT Selection
        6. 8.2.2.6 CIN Selection
        7. 8.2.2.7 Discontinuous Conduction and Continuous Conduction Mode Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 Power Dissipation and Thermal Considerations
    4. 10.4 Power Module SMT Guidelines
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN MAX UNIT
VIN to PGND –0.3 40 V
EN, SYNC to AGND –0.3 5.5 V
SS, FB, SH to AGND –0.3 2.5 V
AGND to PGND –0.3 0.3 V
Junction temperature 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) For soldering specifications: see product folder at www.ti.com and lSNOA549

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VIN 6 36 V
EN, SYNC 0 5 V
Operation Junction Temperature −40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LMZ23610 UNIT
NDY
11 PINS
RθJA Junction-to-ambient thermal resistance(3) Natural Convection 9.9 °C/W
225 LFPM 6.8
500 LFPM 5.2
RθJC(top) Junction-to-case (top) thermal resistance 1.0 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Limits are for TJ = 25°C unless otherwise specified. Minimum and Maximum limits are specified through test, design or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following conditions apply: VIN = 12V, VOUT = 3.3V
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
SYSTEM PARAMETERS
ENABLE CONTROL
VEN EN threshold VEN rising 1.274 V
over the junction temperature (TJ) range of –40°C to +125°C 1.096 1.452
IEN-HYS EN hysteresis source current VEN > 1.274 V 13 µA
SOFT-START
ISS SS source current VSS = 0 V 50 µA
over the junction temperature (TJ) range of –40°C to +125°C 40 60
tSS Internal soft-start interval 1.6 ms
CURRENT LIMIT
ICL Current limit threshold DC average 12.5 A
INTERNAL SWITCHING OSCILLATOR
fosc Free-running oscillator frequency Sync input connected to ground 314 359 404 kHz
fsync Synchronization range Vsync = 3.3 Vp-p 314 600 kHz
VIL-sync Synchronization logic zero amplitude Relative to AGND over the junction temperature (TJ) range of –40°C to +125°C 0.4 V
VIH-sync Synchronization logic one amplitude Relative to AGND over the junction temperature (TJ) range of –40°C to +125°C 1.8 V
Sync d.c. Synchronization duty cycle range 15% 50% 85%
REGULATION AND OVERVOLTAGE COMPARATOR
VFB In-regulation feedback voltage VSS >+ 0.8 V
IO = 10 A
0.795 V
over the junction temperature (TJ) range of –40°C to +125°C 0.775 0.815
VFB-OV Feedback over-voltage protection threshold 0.86 V
IFB Feedback input bias current 5 nA
IQ Non-switching quiescent current SYNC = 3.0 V 3 mA
ISD Shutdown quiescent current VEN = 0 V 32 μA
Dmax Maximum duty factor 85%
THERMAL CHARACTERISTICS
TSD Thermal shutdown Rising 165 °C
TSD-HYST Thermal shutdown hysteresis Falling 15 °C
PERFORMANCE PARAMETERS(4)
ΔVO Output voltage ripple BW at 20 MHz 24 mVPP
ΔVO/ΔVIN Line regulation VIN = 12 V to 20 V, IOUT= 10 A ±0.2%
ΔVO/ΔIOUT Load regulation VIN = 12 V, IOUT= 0.001 A to 10 A 1 mV/A
η Peak efficiency VIN = 12 V, VOUT = 3.3 V, IOUT = 5 A 89.5%
η Full load efficiency VIN = 12 V, VOUT = 3.3 V, IOUT = 10 A 87.5%
(1) Minimum and Maximum limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate TI’s Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) RθJA measured on a 3.0-in × 3.5-in 4-layer board, with 2-oz. copper on outer layers and 1-oz. copper on inner layers, two hundred and ten thermal vias, and 2-W power dissipation. Refer to evaluation board application note layout diagrams.
(4) Refer to BOM in Table 1.

6.6 Typical Characteristics

Unless otherwise specified, the following conditions apply: VIN = 12 V; CIN = three × 10 μF + 47-nF X7R Ceramic; COUT = two × 330-μF Specialty Polymer + 47-µF Ceramic + 47-nF Ceramic; CFF = 4.7 nF; TA = 25° C for waveforms. All indicated temperatures are ambient.
LMZ23610 30151134.gif
Figure 1. Efficiency 5-V Output at 25°C
LMZ23610 30151136.gif
Figure 3. Efficiency 3.3-V Output at 25°C
LMZ23610 30151138.gif
Figure 5. Efficiency 2.5-V Output at 25°C
LMZ23610 30151140.gif
Figure 7. Efficiency 1.8-V Output at 25°C
LMZ23610 30151142.gif
Figure 9. Efficiency 1.5-V Output at 25°C
LMZ23610 30151144.gif
Figure 11. Efficiency 1.2-V Output at 25°C
LMZ23610 30151146.gif
Figure 13. Efficiency 1-V Output at 25°C
LMZ23610 30151148.gif
Figure 15. Efficiency 5-V Output at 85°C
LMZ23610 30151150.gif
Figure 17. Efficiency 3.3-V Output at 85°C
LMZ23610 30151152.gif
Figure 19. Efficiency 2.5-V Output at 85°C
LMZ23610 30151154.gif
Figure 21. Efficiency 1.8-V Output at 85°C
LMZ23610 30151156.gif
Figure 23. Efficiency 1.5-V Output at 85°C
LMZ23610 30151158.gif
Figure 25. Efficiency 1.2-V Output at 85°C
LMZ23610 30151160.gif
Figure 27. Efficiency 1-V Output at 85°C
LMZ23610 30151162.gif
VOUT = 3.3 V
Figure 29. Normalized Line and Load Regulation
LMZ23610 30151164.gif
VIN = 24 V, VOUT = 3.3 V
Figure 31. Thermal Derating
LMZ23610 30151166.png
12 VIN, 5 VOUT at Full Load, BW = 20 MHz
Figure 33. Output Ripple
LMZ23610 30151167.png
12 VIN, 3.3 VOUT at Full Load, BW = 20 MHz
Figure 35. Output Ripple
LMZ23610 30151168.png
12 VIN, 1.2 VOUT at Full Load, BW = 20 MHz
Figure 37. Output Ripple
LMZ23610 30151172.png
12 VIN, 5 VOUT, 1- to 10-A Step
Figure 39. Transient Response
LMZ23610 30151174.png
12 VIN, 1.2 VOUT, 1- to 10-A Step
Figure 41. Transient Response
LMZ23610 30151176.png
No CSS
Figure 43. 3.3 VOUT Soft-Start
LMZ23610 30151135.gif
Figure 2. Dissipation 5-V Output at 25°C
LMZ23610 30151137.gif
Figure 4. Dissipation 3.3-V Output at 25°C
LMZ23610 30151139.gif
Figure 6. Dissipation 2.5-V Output at 25°C
LMZ23610 30151141.gif
Figure 8. Dissipation 1.8-V Output at 25°C
LMZ23610 30151143.gif
Figure 10. Dissipation 1.5-V Output at 25°C
LMZ23610 30151145.gif
Figure 12. Dissipation 1.2-V Output at 25°C
LMZ23610 30151147.gif
Figure 14. Dissipation 1-V Output at 25°C
LMZ23610 30151149.gif
Figure 16. Dissipation 5-V Output at 85°C
LMZ23610 30151151.gif
Figure 18. Dissipation 3.3-V Output at 85°C
LMZ23610 30151153.gif
Figure 20. Dissipation 2.5-V Output at 85°C
LMZ23610 30151155.gif
Figure 22. Dissipation 1.8-V Output at 85°C
LMZ23610 30151157.gif
Figure 24. Dissipation 1.5-V Output at 85°C
LMZ23610 30151159.gif
Figure 26. Dissipation 1.2-V Output at 85°C
LMZ23610 30151161.gif
Figure 28. Dissipation 1-V Output at 85°C
LMZ23610 30151163.gif
VIN = 24 V, VOUT = 5 V
Figure 30. Thermal Derating
LMZ23610 30151165.gif
Figure 32. RJθA vs Copper Heat Sinking Area
LMZ23610 30151169.png
12 VIN, 5 VOUT at Full Load, BW = 250 MHz
Figure 34. Output Ripple
LMZ23610 30151170.png
12 VIN, 3.3 VOUT at Full Load, BW = 250 MHz
Figure 36. Output Ripple
LMZ23610 30151171.png
12 VIN, 1.2 VOUT at Full Load, BW = 250 MHz
Figure 38. Output Ripple
LMZ23610 30151173.png
12 VIN, 3.3 VOUT, 1- to 10-A Step
Figure 40. Transient Response
LMZ23610 30151175.gif
Figure 42. Short Circuit Current vs Input Voltage
LMZ23610 301511a4.png
CSS = 0.47 µF
Figure 44. 3.3 VOUT Soft-Start