SNVS481M November   2006  – December 2015 LP3910

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Tables
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Electrical Characteristics: I2C Interface
    7. 7.7  Electrical Characteristics: Li-Ion Battery Charger
    8. 7.8  Detection and Timing
    9. 7.9  Output Electrical Characteristics: CHG, STAT
    10. 7.10 Output Electrical Characteristics: NRST, IRQB, ONSTAT
    11. 7.11 Input Electrical Characteristics: USBSUSP, USBISEL
    12. 7.12 Input Electrical Characteristics: POWERACK, ONOFF, LDO2EN, BUCK1EN
    13. 7.13 Electrical Characteristics: LDO1 Low Dropout Linear Regulators
    14. 7.14 Electrical Characteristics: LDO2 Low Dropout Linear Regulator
    15. 7.15 Electrical Characteristics: Buck1 Converter
    16. 7.16 Electrical Characteristics: Buck2 Converter
    17. 7.17 Electrical Characteristics: Buck-Boost
    18. 7.18 Electrical Characteristics: ADC
    19. 7.19 I2C Timing Requirements
    20. 7.20 USB Timing Requirements
    21. 7.21 Typical Characteristics
      1. 7.21.1 Battery-Charger Characteristics
      2. 7.21.2 LDO Characteristics
      3. 7.21.3 Buck Characteristics
      4. 7.21.4 Buck-Boost Characteristics
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 Two Buck Converters
      2. 8.1.2 Buck-Boost Converter
      3. 8.1.3 LDO Regulators
      4. 8.1.4 Battery Charger
      5. 8.1.5 ADC
      6. 8.1.6 Supply Specification
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Buck1, Buck2: Synchronous Step-Down Magnetic DC-DC Converters
        1. 8.3.1.1 Buck1, Buck2 Operation
        2. 8.3.1.2 Circuit Operation Description
        3. 8.3.1.3 PWM Operation
        4. 8.3.1.4 Internal Synchronous Rectification
        5. 8.3.1.5 Current Limiting
        6. 8.3.1.6 PFM Operation
      2. 8.3.2  Buck-Boost: Synchronous Buck-Boost Magnetic DC-DC Converter
      3. 8.3.3  Linear Low Dropout Regulators (LDOs)
        1. 8.3.3.1 No-Load Stability
      4. 8.3.4  Li-Ion Linear Charger
        1. 8.3.4.1 Charger Architecture
        2. 8.3.4.2 Charge Status Indication
        3. 8.3.4.3 Thermal Charger Power FET Regulation
        4. 8.3.4.4 Battery Charger Operating Modes
          1. 8.3.4.4.1 Pre-Qualification Mode
          2. 8.3.4.4.2 Full-Rate Charging Mode
          3. 8.3.4.4.3 Constant-Voltage (CV) Charging Mode
          4. 8.3.4.4.4 Top-Off Charging Mode
          5. 8.3.4.4.5 Charge Cycle Complete
        5. 8.3.4.5 Battery Temperature Monitoring (TS Pin)
        6. 8.3.4.6 Disabling Charger
        7. 8.3.4.7 Safety Timer
        8. 8.3.4.8 Charging Maintenance
      5. 8.3.5  ADC
        1. 8.3.5.1 Battery Voltage Measurement
        2. 8.3.5.2 Battery Charge Current Measurement
        3. 8.3.5.3 External General-Purpose Sources
      6. 8.3.6  Interrupt Request Output
        1. 8.3.6.1 Interrupts and Standby Mode
        2. 8.3.6.2 Interrupt Sources
      7. 8.3.7  Power-On-Reset
      8. 8.3.8  Thermal Shutdown and Thermal Alarm
      9. 8.3.9  NRST Pin
      10. 8.3.10 Operation Without I2C Interface
      11. 8.3.11 I2C Master Power Concern
      12. 8.3.12 System Operation When the Load Current Exceeds the USB or Adapter Current Limit
      13. 8.3.13 Power Routing
      14. 8.3.14 Battery Monitor
      15. 8.3.15 External Power and Battery Detection
      16. 8.3.16 USB Suspend Mode
      17. 8.3.17 Setting the USB Current Limit
      18. 8.3.18 Control Registers
    4. 8.4 Device Functional Modes
      1. 8.4.1 State Machine Definitions
        1. 8.4.1.1 Power-Off Mode
        2. 8.4.1.2 Standby Mode
        3. 8.4.1.3 Active Mode
      2. 8.4.2 Mode Sequencing
        1. 8.4.2.1 Power-On, Power-Off Sequencing
        2. 8.4.2.2 Power-On Timing
        3. 8.4.2.3 Power-Off Timing
        4. 8.4.2.4 Transitioning From Standby to Active Mode (Power Up) Battery Power Present Only
        5. 8.4.2.5 Transitioning From Active Mode to Standby Mode
          1. 8.4.2.5.1 External Event Triggers the Transition From Active to Standby Mode
          2. 8.4.2.5.2 Transition From Active to Standby Mode Due to Expiring POWERACK Deadline
          3. 8.4.2.5.3 Transition From Charger Standby Mode to Either Active or Standby Mode
    5. 8.5 Programming
      1. 8.5.1 I2C-Compatible Serial Interface
        1. 8.5.1.1 I2C Signals
        2. 8.5.1.2 I2C Data Validity
        3. 8.5.1.3 I2C Start and Stop Conditions
        4. 8.5.1.4 Transferring Data
        5. 8.5.1.5 Register Write Cycle
        6. 8.5.1.6 Register Read Cycle
        7. 8.5.1.7 Multi-Byte I2C Command Sequence
    6. 8.6 Register Maps
      1. 8.6.1  LDO1 Control Register
      2. 8.6.2  BATTLOW Register (04)H Battery Low Alarm Register
      3. 8.6.3  PON Register (00)H Power-On Event Register
      4. 8.6.4  CHCTL Register (01)H Charger Control Register
      5. 8.6.5  CHSPV Register (02)H Charger Supervisor Register
      6. 8.6.6  ILIMIT Register (03)H Current Limit Register
      7. 8.6.7  ADCC Register (0a)H ADC Control Register
      8. 8.6.8  ADCD Register (0b)H ADC Output Data Register
      9. 8.6.9  IMR Register (0c)H Interrupt Mask Register
      10. 8.6.10 IRQ Register (0d)H Interrupt Request Register
      11. 8.6.11 LDO1 Control Register (08)H
      12. 8.6.12 LDO2 Control Register
      13. 8.6.13 Buck1, Buck2 Control Registers and BUCK1EN Pin
      14. 8.6.14 Buck-Boost Control Register
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductors for Buck1, Buck2 and Buck-Boost
          1. 9.2.2.1.1 Method 1
          2. 9.2.2.1.2 Method 2
        2. 9.2.2.2 External Capacitors
          1. 9.2.2.2.1 LDO Capacitor Selection
            1. 9.2.2.2.1.1 Input Capacitor
            2. 9.2.2.2.1.2 Output Capacitor
            3. 9.2.2.2.1.3 Capacitor Characteristics
            4. 9.2.2.2.1.4 Noise Bypass Capacitors for VREFH Pin
          2. 9.2.2.2.2 Buck1, Buck2 and Buck-Boost Capacitor Selection
            1. 9.2.2.2.2.1 Input Capacitor Selection for Buck1, Buck2 and Buck-Boost
            2. 9.2.2.2.2.2 Output Capacitor Selection for Buck1, Buck2 and Buck-Boost
        3. 9.2.2.3 Schottky Diode on Charger Input CHG_IN
        4. 9.2.2.4 Resistors
          1. 9.2.2.4.1 Battery Thermistor
          2. 9.2.2.4.2 I2C Pullup Resistors
          3. 9.2.2.4.3 RIREF Resistor
          4. 9.2.2.4.4 RISENSE Resistor
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 LDO Regulators
      2. 11.1.2 Buck and Buck-Boost Regulators
    2. 11.2 Layout Example
    3. 11.3 Thermal Performance of the WQFN Package
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
MIN MAX UNIT
Supply voltage CHG_DET –0.3 6.5 V
Battery voltage VBATT1, 2, 3 –0.3 5 V
Voltage USBPWR, VIN1,VIN2,VIN3,VIN4, VDD1,VDD2,VDD3 –0.3 6.2 V
All other pins –0.3 VDD + 0.3 V
Power dissipation (TA = 70°C)(4) 2.6 W
Storage temperature, Tstg –45 150 ºC
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to the potential at the GND pin.
(3) In applications where high power dissipation or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP − (RθJA × PD-MAX).
(4) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 160°C (typical) and disengages at TJ = 140°C (typical).

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Machine model ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
MIN NOM MAX UNIT
CHG_DET 4.5 6 V
USBPWR 4.35 6 V
VBATT1, 2, 3 0 4.5 V
VIN1, VIN2, VIN3, VIN4, VDD1, VDD2, VDD3 2.5 6 V
VDDIO 2.5 VDD V
Junction temperature, TJ –40 125 °C
Ambient temperature, TA –40 85 °C
Power dissipation, TJ-MAX and TA-MAX 1.6 W
(1) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
(2) Minimum and maximum limits are specified by design, test, or statistical analysis. Nominal numbers are not ensured, but do represent the most likely norm.
(3) Nominal values and limits are for TJ = 25°C.

7.4 Thermal Information

THERMAL METRIC(1) LP3910 UNIT
NJV (WQFN)
48 PINS
RθJA Junction-to-ambient thermal resistance 25 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics

Unless otherwise noted, VDD = 5 V, VBATT = 3.6 V, and limits apply for TJ = 25°C.(1)(2)(3)(4)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IQ_BATT Battery standby supply current All circuits off except for POR and battery monitor. No adapter or USB power connected. 6 20 µA
IQ_BATT Battery standby supply current All circuits off except for POR and battery monitor. No adapter or USB power connected.
TJ = 0°C to 125°C
20 µA
VPOR Power-on reset threshold VDD falling edge 1.9 V
TSD Thermal shutdown threshold 160 °C
TSDH Thermal shutdown hysteresis 20 °C
TTH-ALERT Thermal interrupt threshold 115 °C
VDDIO IO supply 2.5 VDD V
FCLK Internal system clock frequency 2 MHz
(1) All voltages are with respect to the potential at the GND pin.
(2) Minimum and maximum limits are specified by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely norm.
(3) Low ESR Surface-Mount Ceramic Capacitors (MLCCs) are used in setting electrical characteristics.
(4) This specification is ensured by design. Not tested during production.

7.6 Electrical Characteristics: I2C Interface

Unless otherwise noted, VDDIO = 3.6 V, and minimum and maximum limits apply for TJ = 0°C to 125°C.(1)(2)(3)(4)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIL Low level input voltage I2C_SDA & I2C_SCL 0.3 × VDDIO V
VIH High level input voltage I2C_SDA & I2C_SCL 0.7 × VDDIO V
VOL Low level output voltage I2C_SDA & I2C_SCL 0 0.2 × VDDIO V
VHYS Schmitt trigger input hysterisis I2C_SDA & I2C_SCL 0.1 × VDDIO V
(1) All voltages are with respect to the potential at the GND pin.
(2) Minimum and maximum limits are specified by design, test, or statistical analysis.
(3) Low ESR Surface-Mount Ceramic Capacitors (MLCCs) are used in setting electrical characteristics.
(4) This specification is ensured by design.

7.7 Electrical Characteristics: Li-Ion Battery Charger

Unless otherwise noted, VDD = 5 V, VBATT = 3.6 V, CBATT = 4.7 µF, CCHG_DET = 10 µF, RIREF = 121 kΩ. Typical limits apply for TJ = 25°C; minimum and maximum limits apply for TJ = 0°C to 125°C, unless otherwise specified.(1)(2)(3)(4)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VUSB Minimum external USB supply voltage TJ = 25°C
USB current limit = 500 mA
4.15 4.25 4.35 V
VUSB_HYST USBPWR detect hysteresis 110 mV
CHG_DET Minimum external adapter supply voltage range TJ = 25°C
Adapter current limit = 1 A
VFWD Schottky = 350 mV
4.4 4.5 4.6 V
VCHG_HYST CHG_DET input hysteresis 150 mV
IUSB_SUSP Quiescent current in USB suspend mode USB suspend mode, VUSB = 5 V
USBSUSP = USBPWR
USBISEL = 0 V
30 60 µA
VTERM_TOL Battery charge termination voltage tolerance (selected in CHCTL Register (01)H Charger Control Register) TJ = 25°C
IPROG = 500 mA, ICHG = 50 mA
–0.35%
−0.5%
−0.5%
4.2
4.1
4.38
0.35%
0.5%
0.5%
V
TJ = 0°C to 125°C
IPROG = 500 mA, ICHG = 50 mA
–1%
–1.5%
–1.5%
4.2
4.1
4.38
1%
1.5%
1.5%
V
ICHG_WA Full-rate charging current from wall adapter input (see Full-Rate Charging Mode) CHG_DET = 5.25 V
VBATT = 3.6 V, IPROG = 500 mA
450 500 550 mA
ICHG_USB Full-rate charging current from usbpwr input (see Full-Rate Charging Mode) USB = 5 V, VBATT = 3.6 V
IPROG = 500 mA, USB_ISEL = 800 mA
450 500 550 mA
USB = 5 V, VBATT = 3.6 V
IPROG = 500 mA, USB_ISEL = 500 mA
405 450 495 mA
USB ILIMIT USB charge-current limit USB_ISEL = 100 mA 90 95 100 mA
USB_ISEL = 500 mA 450 475 500
USB_ISEL = 800 mA 720 760 800
IPREQUAL Pre-qualification current VBATT = 2.5 V, wall-adapter charge current
Percentage of programmed full-rate current
8% 10% 12%
VBATT = 2.5 V, USB charge current 40 50 60 mA
VFULL_RATE Full-rate qualification threshold VBATT rising, transition from pre-qualification to full-rate charging (standard) 2.75 2.85 2.95 V
VBATT rising, transition from pre-qualification to full-rate charging (AP version only) 2.45 2.55 2.65
VTH_H Upper TS comparator limit 2.82 2.87 2.93 V
VTH_L Lower TS comparator limit 45°C CHSPV Reg D3 = 0 0.315 0.33 0.345 V
50°C CHSPV Reg D3 = 1 0.255 0.27 0.285
ITSENSE Battery temperature sense current 7.75 8 8.25 µA
TREG Regulated charger junction temperature TJ = 25°C 105 115 125 °C
(1) All voltages are with respect to the potential at the GND pin.
(2) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
(3) Minimum and maximum limits are specified by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely norm.
(4) Low ESR Surface-Mount Ceramic Capacitors (MLCCs) are used in setting electrical characteristics.

7.8 Detection and Timing

Typical limits apply for TJ = 25°C; minimum and maximum limits apply for TJ = 0°C to 125°C, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IEOC End-of-charge current IPROG = 500 mA
10% EOC setting
40 50 60 mA
IPROG = 500 mA
5% EOC setting
20 25 30 mA
VRESTART Battery restart charging voltage VTERM = 4.1 V 3.82 3.9 3.94 V
VTERM = 4.2 V 3.94 4 4.06
VTERM = 4.38 V 4.14 4.2 4.26

7.9 Output Electrical Characteristics: CHG, STAT

Unless otherwise noted, VDD = 5 V, VBATT = 3.6 V. CBATT = 4.7 µF, CCHG_DET = 10 µF. Typical limits apply for TJ = 25°C; minimum and maximum limits apply for TJ = 0°C to 125°C, unless otherwise specified.(1)(2)(3)(4)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ILED Output high level VLED = 2 V
CHSPV Register (02)h bit 5 = 1 (standard)
4 5 6 mA
VLED = 2 V
CHSPV Register (02)h bit 5 = 1 (AP version only)
0.75 1 1.25
ILED Output high level VLED = 2 V
CHSPV Register (02)h bit 5 = 0 (standard)
8 10 12 mA
VLED = 2 V
CHSPV Register (02)h bit 5 = 0 (AP version only)
1.6 2 2.4
ILEAKAGE Leakage current VLED = 1.5 V, LED off 0.1 5 µA
LEDFREQ Blinking frequency 0.8 1 1.2 Hz
(1) All voltages are with respect to the potential at the GND pin.
(2) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
(3) Minimum and maximum limits are specified by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely norm.
(4) Low ESR Surface-Mount Ceramic Capacitors (MLCCs) are used in setting electrical characteristics.

7.10 Output Electrical Characteristics: NRST, IRQB, ONSTAT

Unless otherwise noted, VDD = 5 V, VBATT = 3.6 V, CBATT = 4.7 µF, CCHG_DET = 10 µF. Minimum and maximum limits apply over the entire junction temperature range for operation, TJ = 0°C to 125°C.(1)(2)(3)(4)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOL Output low level IOL = 4 mA 0.4 V
ILEAKAGE Leakage current VDD = 2.5 V, output logic high –1 1 µA
(1) All voltages are with respect to the potential at the GND pin.
(2) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
(3) Minimum and maximum limits are specified by design, test, or statistical analysis.
(4) Low ESR Surface-Mount Ceramic Capacitors (MLCCs) are used in setting electrical characteristics.

7.11 Input Electrical Characteristics: USBSUSP, USBISEL

Unless otherwise noted, VUSB = 5 V, VBATT = 3.6 V, CBATT = 4.7 µF, CCHG_DET = 10 µF. Minimum and maximum limits apply over the entire junction temperature range for operation, TJ = 0°C to 125°C.(1)(2)(3)(4)(5)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIL Input low level 0.3 × VUSB V
VIH Input high level 0.7 × VUSB V
ILEAKAGE Input leakage −1 1 µA
(1) LDO2EN, BUCK1EN, and USBSUSP have weak internal pulldowns while pins POWERACK, ONOFF do not have weak pulldowns.
(2) All voltages are with respect to the potential at the GND pin.
(3) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
(4) Minimum and maximum limits are specified by design, test, or statistical analysis.
(5) Low ESR Surface-Mount Ceramic Capacitors (MLCCs) are used in setting electrical characteristics.

7.12 Input Electrical Characteristics: POWERACK, ONOFF, LDO2EN, BUCK1EN

Unless otherwise noted, VDD = 5 V, VBATT = 3.6 V, CBATT = 4.7 µF, CCHG_IN = 10 µF. Minimum and maximum limits apply over the entire junction temperature range for operation, TJ = 0°C to 125°C.(1)(2)(3)(4)(5)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIL Input low level 0.4 V
VIH Input high level 1.4 V
ILEAKAGE Input leakage –1 1 µA
(1) LDO2EN, BUCK1EN, and USBSUSP have weak internal pulldowns, while pins POWERACK, ONOFF do not have this.
(2) All voltages are with respect to the potential at the GND pin.
(3) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
(4) Minimum and maximum limits are specified by design, test, or statistical analysis.
(5) Low ESR Surface-Mount Ceramic Capacitors (MLCCs) are used in setting electrical characteristics.

7.13 Electrical Characteristics: LDO1 Low Dropout Linear Regulators

Unless otherwise noted, VIN1 = 3.6 V, IMAX = 150 mA, VOUT = default value, CVDD = 10 µF, CLDO1 = 1 µF, ESR = 5 mΩ – 500 mΩ, CVREFH = 100 nF. Typical limits apply for TJ = 25°C; minimum and maximum limits apply for TJ = 0°C to 125°C, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN1 Operational voltage 2.5 6 V
VOUT Range Output voltage programming range TJ = 25°C
1.2 V to 3.3 V in 100-mV steps
1.2 3.3 V
VOUT Accuracy Output voltage accuracy 1 mA ≤ IOUT ≤ IMAX over full line and load regulation.
VOUT = default value
–3% 3%
ΔVOUT Line regulation VIN = (VOUT + 500 mV) to 5.5 V
Load current = IMAX
3 mV
Load regulation VIN = 3.6 V,
Load current = 1 mA to IMAX
10 mV
ISC Short-circuit current limit VOUT = 0 V 600 750 mA
VIN – VOUT Dropout voltage Load current = IMAX 60 150 mV
PSRR Power supply ripple rejection F = 10 kHz, load current = IMAX 30 dB
RSHUNT LDO output impedance LDO disabled, VOUT = default value 200 Ω

7.14 Electrical Characteristics: LDO2 Low Dropout Linear Regulator

Unless otherwise noted VIN1 = 3.6V, IMAX = 150 mA, VOUT = default value, CVDD = 10 µF, CLDO2 = 1 µF, ESR = 5 mΩ to 500 mΩ, CVREFH = 100 nF. Typical limits apply for TJ = 25°C; minimum and maximum limits apply for TJ = 0°C to 125°C, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN2 Operational voltage 2.5 6 V
VOUT range Output voltage programming range TA = 25°C
1.3 V to 3.3 V in 100-mV steps
1.3 3.3 V
VOUT accuracy Output voltage accuracy
(default VOUT)
1 mA ≤ IOUT ≤ IMAX over full line and load regulation –3% 3%
ΔVOUT Line regulation VIN = (VOUT + 500 mV) to 5.5 V,
Load current = IMAX
3 mV
Load regulation VIN = 3.6 V,
Load current = 1 mA to IMAX
10 mV
ISC Short-circuit current limit VOUT = 0 V 600 750 mA
VIN – VOUT Dropout voltage Load current = IMAX 60 150 mV
PSRR Power supply ripple rejection F = 1 kHz, load current = IMAX 50 dB
F = 10 kHz, load current = IMAX 35
eN Analog supply output noise voltage 10 Hz < F < 100 kHz 50 µVRMS
RSHUNT LDO output impedance LDO disabled, VOUT = default value 200 Ω

7.15 Electrical Characteristics: Buck1 Converter

Unless otherwise noted, VIN2 = 3.6 V, VOUT = default value, CVIN2 = 10 µF, CSW1 = 10 µF, LSW1 = 2.2 µH. Typical limits apply for TJ = 25°C; minimum and maximum limits apply for TJ = 0°C to 125°C, unless otherwise specified. Modulation mode is PWM mode with automatic switch to PFM at light loads.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN2 Input voltage 2.7 6 V
VOUT range Output voltage programming range TJ = 25°C
0.8 V to 2 V in 50-mV Steps
0.8 2 V
ΔVOUT Static output voltage tolerance IOUT = 200 mA including line and load regulation –3% 3%
Line regulation IOUT = 10 mA
VIN2 = 2.5 V − VDD
0.2 %/V
Load regulation 100 mA < IOUT < 300 mA 0.002 %/mA
IOUT Continuous output current 600 mA
Peak output current limit 850 1000 1150 mA
IPFM Maximum ILOAD, PFM mode 75 mA
IQ Quiescent current IOUT = 0 mA 30 90 µA
BUCK1 disabled 1
FOSC Internal oscillator frequency PWM mode 2 MHz
η Peak efficiency 90%
TON Turnon time To 95% level(1) 1 ms
(1) This specification is ensured by design.

7.16 Electrical Characteristics: Buck2 Converter

Unless otherwise noted, VIN3 = 3.6 V, VOUT = default value, CVIN3 = 10 µF, CSW1 = 10 µF, LSW2 = 2.2 µH. Typical limits apply for TJ = 25°C; minimum and maximum limits apply for TJ = 0°C to 125°C, unless otherwise specified. Modulation mode is PWM mode with automatic switch to PFM at light loads.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN3 Input voltage 2.7 6 V
VOUT Range Output voltage programming range 1.8 V – 3.3 V in 100-mV steps 0.8 2 V
ΔVOUT Static output voltage tolerance IOUT = 200 mA including line and load regulation –3% 3%
Line regulation IOUT = 10 mA
VIN3 = 2.5 V − VDD
0.2 %/V
Load regulation 100 mA < IOUT < 300 mA 0.002 %/mA
IOUT Continuous output current 600 mA
Peak output current limit 850 1000 1150 mA
IPFM Maximum ILOAD, PFM mode 75 mA
IQ Quiescent current IOUT = 0 mA 30 90 µA
Buck2 disabled 1
FOSC Internal oscillator frequency PWM mode 2 MHz
η Peak efficiency 90%
TON Turnon time To 95% level(1) 1 ms
(1) This specification is ensured by design..

7.17 Electrical Characteristics: Buck-Boost

Unless otherwise noted, VIN4 = 3.6 V, CVIN4 = 10 µF, CBB = 22 µF, LBB = 2.2 µH. Typical limits apply for TJ = 25°C; minimum and maximum limits apply for TJ = 0°C to 125°C, unless otherwise specified. Modulation mode is PWM mode with automatic switch to PFM at light loads.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN4 Input voltage IOUTMAX = 1000 mA 2.9 5.7 V
IOUTMAX = 800 mA 2.7 5.7 V
VOUT Range Output voltage programming range TJ = 25°C
1.80 V to 3.30 V in 50-mV steps
1.8 3.3 V
ΔVOUT Static output voltage tolerance IOUT = 0 mA to 1000 mA including line and load regulation –4% 4%
Line regulation IOUT = 10 mA 0.2 %/V
Load regulation 100 mA < IOUT < 1000 mA 0.0016 %/mA
IOUT Continuous output current 1000 mA
Peak inductor current limit VOUT = 3.3 V
1-A load at VIN = 2.7 V
1800 2400 mA
IPFM Maximum ILOAD, PFM mode 75 mA
IQ Quiescent current IOUT = 0 mA PFM no switching 80 µA
Buck-Boost disabled 1
FOSC Internal oscillator frequency PWM mode 2 MHz
η Peak efficiency 93%
TON Turnon time To 95% level(1) 1 ms
(1) This specification is ensured by design.

7.18 Electrical Characteristics: ADC

All limits apply for TJ = 25°C unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREF Reference voltage TJ = 25°C 1.22 1.225 1.23 V
TJ = 0°C to 125°C 1.2 1.225 1.23 V
INL Core ADC integral non-linearity VREF = 1.225(1) –1 1 LSB
DNL Core ADC differential non-linearity VREF = 1.225(1) –0.5 0.5 LSB
VGP_IN General purpose ADC input voltage range VREF 2 × VREF V
VBATT, RANGE 0 Battery maximum voltage scalar output VBATT = 3.5 V 2.435 2.45 2.465 V
Battery minimum voltage scalar output VBATT = 2.6 V 1.217 1.225 1.232 V
VBATT, RANGE 1 Battery maximum voltage scalar output VBATT = 4.4 V 2.435 2.45 2.465 V
Battery minimum voltage scalar output VREF = 2.6 V 1.217 1.225 1.232 V
VISENSE , RANGE 0 ISENSE maximum voltage scalar output VISENSE = 0.6463 V
ICHG = 0.605 A,
RSENSE = 4.64 kΩ
2.373 2.45 2.519 V
ISENSE minimum voltage scalar output VISENSE = 0 V
ICHG = 0 A,
RSENSE = 4.64 kΩ
1.186 1.225 1.260 V
VISENSE, RANGE 1 ISENSE maximum voltage scalar output VISENSE = 1.175 V
ICHG = 1.1 A,
RSENSE = 4.64 kΩ
2.373 2.45 2.519 V
ISENSE minimum voltage scalar output VISENSE = 0 V
ICHG = 0 A,
RSENSE = 4.64 kΩ
1.186 1.225 1.26 V
ADC1 and ADC2MIN ADC1 and ADC2 minimum voltage scalar output VREFH = 1.225 V 1.218 1.225 1.23 V
ADC1 and ADC2MAX ADC1 and ADC2 maximum voltage scalar output VREFH = 1.225 V 2.436 2.45 2.46 V
tCONV Conversion time(1) 5 ms
tWARM Warm-up time 2 ms
(1) This specification is ensured by design.

7.19 I2C Timing Requirements

Unless otherwise noted, VDDIO = 3.6 V and minimum and maximum limits apply for TJ = 0°C to 125°C.(1)
MIN NOM MAX UNIT
FCLK Clock frequency 400 kHz
tBF Bus-free time between START and STOP 1.3 µs
tHOLD Hold time repeated START condition 0.6 µs
tCLK-LP CLK low period 1.3 µs
tCLK-HP CLK high period 0.6 µs
tSU Set-up time repeated START condition 0.6 µs
tDATA-HOLD Data hold time 0 µs
tDATA-SU Data set-up time 100 ns
tSU Set-up time for STOP condition 0.6 µs
tTRANS Maximum pulse width of spikes that must be suppressed by the input filter of both data and CLK signals
TJ = 25°C
50 µs
(1) These specifications are ensured by design.

7.20 USB Timing Requirements

Nominal limits apply for TJ = 25°C; minimum and maximum limits apply for TJ = 0°C to 125°C, unless otherwise specified.
MIN NOM MAX UNIT
TCHG_IN Deglitch adapter insertion 28 32 36 ms
TUSB Deglitch USB power insertion 28 32 36 ms
TPQ_FULL Deglitch time for pre-qualification to full-rate charge transition 8 10 12 ms
TFULL_PQ Deglitch time for full-rate to pre-qualification transition 8 10 12 ms
TBATTLOWF Deglitch time for VBATT falling below VBATTLOW threshold 4 5 6 ms
TBATTLOWR Deglitch time for VBATT rising above VBATTLOW threshold 4 5 6 ms
TBATTEMP Deglitch time for recovery from battery temperature fault 8 10 12 ms
TONOFF_F Deglitching on falling edge of ONOFF pin 28 32 36 ms
TONOFF_R Deglitching on rising edge of ONOFF pin 28 32 36 ms
TRESTART Deglitching on falling VBATT crossing VRESTART 8 10 12 ms
TCCCV Deglitching of CC→CV charging transition 8 10 12 ms
TCVEOC Deglitching of CV→EOC (End of Charge) 8 10 12 ms
TPOWERACK Deglitching of POWERACK pin 4 5 6 ms
TTSHD Deglitching of thermal shutdown 2 ms
TTOPOFF Topoff timer 17 21 25 min
T10HR 10-hour safety timer 9 10 11 hours
T1HR 1-hour prequalification safety timer 0.9 1 1.1 hour

7.21 Typical Characteristics

TA = 25°C unless otherwise noted

7.21.1 Battery-Charger Characteristics

LP3910 20212396.gif
Figure 1. VTERM 4.2 V vs Temperature
LP3910 20212398.gif
Figure 3. TS Pin Current vs CHG_DET
LP3910 20212339.gif
Prequal IPROG = 500 mA CHG_DET = 5 V
Figure 5. IU vs VBATT
LP3910 20212341.gif
VBATT = 3.5 V, CC
Figure 7. ICHG vs CHG_DET
LP3910 20212343.gif
VBATT = 3.75 V, Prequal CHG_DET = 5 V
Figure 9. ICHG vs Temperature
LP3910 20212345.gif
Figure 11. USB ILIMIT vs Temperature
LP3910 20212397.gif
Figure 2. TS Pin Current vs Temperature
LP3910 20212399.gif
CHG_DET = 5 V CC
Figure 4. CHG vs VBATT
LP3910 20212340.gif
VBATT = 2.5 V Prequal
Figure 6. ICHG vs USBPWR
LP3910 20212342.gif
VBATT = 3.75 V, CC CHG_DET = 5 V
Figure 8. ICHG vs Temperature
LP3910 20212344.gif
Figure 10. Thermal Regulation of Charge Current
LP3910 202123100.png
Ch1 = Charge Current (mA) Ch4 = USBPWR (V)
Ch3 = CHG_DET (V)
Figure 12. Wall Adapter Insertion With USBPWR Present

7.21.2 LDO Characteristics

LP3910 20212346.gif
VIN = 4.3 V VOUT = 3.3 V Load = 100 mA
Figure 13. Output Voltage Change vs Temperature (LDO1)
LP3910 20212348.png
VIN = 3.6 V VOUT = 3.3 V Load = 0 to 100 mA
Figure 15. Load Transient (LDO1)
LP3910 20212350.png
VIN = 3.6 to 4.5 V VOUT = 3.3 V Load = 150 mA
Figure 17. Line Transient (LDO1)
LP3910 20212347.gif
VIN = 4.3 V VOUT = 1.8 V Load = 100 mA
Figure 14. Output Voltage Change vs Temperature (LDO2)
LP3910 20212349.png
VIN = 3.6 V VOUT = 1.8 V Load = 0 to 100 mA
Figure 16. Load Transient (LDO2)
LP3910 20212351.png
VIN = 3 to 4.2 V VOUT = 1.8 V Load = 150 mA
Figure 18. Line Transient (LDO2)

7.21.3 Buck Characteristics

LP3910 20212354.gif
VOUT = 3.3 V
Figure 19. Output Voltage vs Supply Voltage
LP3910 20212356.gif
VOUT = 1.2 V
Figure 21. Output Voltage vs Supply Voltage
LP3910 20212358.gif
VOUT = 1.2 V L = 2.2 µH Forced PWM Mode
Figure 23. Buck1 Efficiency vs Output Current
LP3910 20212360.gif
VOUT = 1.2 V L = 2.2 µH PFM-to-PWM Mode
Figure 25. Buck1 Efficiency vs Output Current
LP3910 20212366.png
VIN = 4.2 V VOUT = 1.2 V Load = 200 to 400 mA
PWM Mode
Figure 27. Buck1 Load Transient Response
LP3910 20212368.png
VIN = 4.2 V VOUT = 3.3 V Load = 0 to 400 mA
PWM Mode
Figure 29. Buck2 Load Transient Response
LP3910 20212370.png
VIN = 3 to 3.6 V VOUT = 1.2 V Load = 250 mA
Figure 31. Line Transient Response
LP3910 20212372.png
VOUT = 1.8 V Load = 30 mA
Figure 33. Start-up into PWM Mode
LP3910 20212374.png
VOUT = 1.8 V Load = 30 mA
Figure 35. Start-up Into PFM Mode
LP3910 20212355.gif
VOUT = 2 V
Figure 20. Output Voltage vs Supply Voltage
LP3910 20212357.gif
VOUT = 0.8 V
Figure 22. Output Voltage vs Supply Voltage
LP3910 20212359.gif
VOUT = 2 V L = 2.2 µH Forced PWM Mode
Figure 24. Buck 1 Efficiency vs Output Current
LP3910 20212361.gif
VOUT = 2 V L = 2.2 µH PFM-to-PWM Mode
Figure 26. Buck1 Efficiency vs Output Current
LP3910 20212367.png
VIN = 4.2 V VOUT = 1.2 V Load = 50 to 150 mA
PFM-to-PWM Mode
Figure 28. Buck1 Load Transient Response
LP3910 20212369.png
VIN = 4.2 V VOUT = 3.3 V Load = 50 to 150 mA
PFM-to_PWM Mode
Figure 30. Buck2 Load Transient Response
LP3910 20212371.png
VIN = 3 to 3.6 V VOUT = 3.3 V Load = 250 mA
Figure 32. Line Transient Response
LP3910 20212373.png
VOUT = 3.3 V Load = 30 mA
Figure 34. Start-up into PWM Mode
LP3910 20212375.png
VOUT = 3.3 V Load = 30 mA
Figure 36. Start-up Into PFM Mode

7.21.4 Buck-Boost Characteristics

LP3910 20212376.gif
ILOAD= 100 mA
Figure 37. Efficiency vs VIN
LP3910 20212378.gif
VOUT = 3.3 V
Figure 39. Automode Efficiency vs ILOAD
LP3910 20212380.png
VIN = 4.2 V VOUT = 3.3 V ILOAD = 250 mA
Figure 41. Switch Pins in Buck Mode Operation
LP3910 20212382.png
VIN = 3.35 V VOUT = 3.3 V ILOAD = 250 mA
Figure 43. Switch Pin on Edge of Boost Mode Operation
LP3910 20212384.png
VIN = 4.2 V VOUT = 3.3 V ILOAD = 0 to 500 mA
Figure 45. Load Transient, Buck Response
LP3910 20212386.png
VIN = 2.7 V VOUT = 3.3 V ILOAD = 0 to 500 mA
Figure 47. Load Transient, Boost Response
LP3910 20212377.gif
VOUT = 3.3 V
Figure 38. Forced PWM Efficiency vs ILOAD
LP3910 20212379.gif
VOUT = 1.8 V
Figure 40. Automode Efficiency vs ILOAD
LP3910 20212381.png
VIN = 3.6 V VOUT = 3.3 V ILOAD = 250 mA
Figure 42. Switch Pin on Edge of Buck Mode Operation
LP3910 20212383.png
VIN = 3.2 V VOUT = 3.3 V ILOAD = 250 mA
Figure 44. Switch Pins in Boost Mode Operationa
LP3910 20212385.png
VIN = 3.6 V VOUT = 3.3 V ILOAD = 0 to 500 mA
Figure 46. Load Transient, Edge of Buck Response
LP3910 20212387.png
VIN = 3 V to 3.6 V VOUT = 3.3 V ILOAD = 500 mA
Figure 48. Line Transient, Boost Response