SNVS256E November   2003  – October 2024 LP3943

PRODUCTION DATA  

  1.   1
  2. 1Features
  3. 2Applications
  4. 3Description
  5. 4Pin Configuration and Functions
    1.     Pin Functions
  6. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 I2C Interface (SCL and SDA Pins) Timing Requirements
    7. 5.7 Typical Characteristic
  7. 6Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
    4. 6.4 Device Functional Modes
    5. 6.5 Programming
      1. 6.5.1 I2C Data Validity
      2. 6.5.2 I2C START and STOP Conditions
      3. 6.5.3 Transferring Data
      4. 6.5.4 Auto Increment
    6. 6.6 Register Maps
      1. 6.6.1 Binary Format for Input Registers (Read-only)—Address 0x00 and 0x01
      2. 6.6.2 Binary Format for Frequency Prescaler and PWM Registers — Address 0x02 to 0x05
      3. 6.6.3 Binary Format for Selector Registers — Address 0x06 to 0x09
  8.   Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Reducing IQ When LEDs are OFF
      3. 7.2.3 Application Curve
    3. 7.3 System Examples
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  9. 7Device and Documentation Support
    1. 7.1 Receiving Notification of Documentation Updates
    2. 7.2 Community Resources
    3. 7.3 Trademarks
  10. 8Revision History
  11.   Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Reducing IQ When LEDs are OFF

In many applications, the LEDs and the LP3943 share the same VDD, as shown in Figure 7-1. When the LEDs are off, the LED pins are at a lower potential than VDD, causing extra supply current (ΔIQ). To minimize this current, consider keeping the LED pins at a voltage equal to or greater than VDD.

LP3943 Methods to Reduce IQ When LEDs are in OFF StateFigure 7-2 Methods to Reduce IQ When LEDs are in OFF State