SLVSHF3 October   2024 LP5899-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Thermal Information
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Timing Diagrams
    9. 6.9 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Internal Oscillator and Clocks
        1. 7.3.1.1 System Clock
        2. 7.3.1.2 Continuous Clock Serial Interface (CCSI) Clock
      2. 7.3.2 Continuous Clock Serial Interface (CCSI)
        1. 7.3.2.1 Command Format
        2. 7.3.2.2 Command Recognition and Synchronization
        3. 7.3.2.3 CCSI Command Queue
        4. 7.3.2.4 CCSI Start Bit and Check Bits Insertion and Removal
      3. 7.3.3 FIFO
        1. 7.3.3.1 FIFO level and Data Ready (DRDY) Interrupt
        2. 7.3.3.2 FIFO Clearance
      4. 7.3.4 Diagnostics
        1. 7.3.4.1  Undervoltage Lockout
        2. 7.3.4.2  Oscillator Fault Diagnostics
        3. 7.3.4.3  SPI Communications Loss
        4. 7.3.4.4  SPI Communications Error
          1. 7.3.4.4.1 Reset Timer
          2. 7.3.4.4.2 Chip Select (CS) Reset
          3. 7.3.4.4.3 CRC Error
          4. 7.3.4.4.4 Register write failure
        5. 7.3.4.5  CCSI Communications Loss
          1. 7.3.4.5.1 SIN Stuck-at Diagnostics
        6. 7.3.4.6  CCSI Communications Error
          1. 7.3.4.6.1 CHECK Bit Error
          2. 7.3.4.6.2 Data Integrity Diagnostics
          3. 7.3.4.6.3 CCSI Command Queue Overflow
        7. 7.3.4.7  FIFO Diagnostics
          1. 7.3.4.7.1 TXFIFO Overflow
          2. 7.3.4.7.2 TXFIFO Underflow
          3. 7.3.4.7.3 TXFIFO Single Error Detection (SED)
          4. 7.3.4.7.4 RXFIFO Overflow
          5. 7.3.4.7.5 RXFIFO Underflow
          6. 7.3.4.7.6 RXFIFO Single Error Detection (SED)
        8. 7.3.4.8  OTP CRC Error
        9. 7.3.4.9  Fault Masking
        10. 7.3.4.10 Diagnostics Table
    4. 7.4 Device Functional Modes
      1. 7.4.1 Unpowered
      2. 7.4.2 Initialization State
      3. 7.4.3 Normal State
      4. 7.4.4 Failsafe State
    5. 7.5 Programming
      1. 7.5.1 SPI Data Validity
      2. 7.5.2 Chip Select (CS) and SPI Reset Control
      3. 7.5.3 SPI Command Format
      4. 7.5.4 SPI Command Detail
    6. 7.6 Device Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Programming Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information
    2. 11.2 Mechanical Data

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The LP5899-Q1 is an SPI-compatible connectivity between an SPI and a Continuous Clock Serial Interface (CCSI). The device can drive any number of cascaded LED drivers of the LP589x-Q1 family. The maximum number of cascaded devices is limited by the LED driver.

The LP5899-Q1 uses an internal oscillator and clock divider to provide a programmable continuous clock frequency for the CCSI. Data words received by the SPI peripheral are forwarded by the CCSI controller where the data is aligned to the continuous clock. Data words received by the CCSI peripheral can be stored by the LP5899-Q1 and read by the Controller using SPI. The continuous clock incorporates a programmable pseudo-random jitter (spread spectrum) feature to reduce EMI emissions.

The LP5899-Q1 automatically inserts the required start bit and check bits when forwarding the data words received by SPI peripheral. For data words received by the CCSI peripheral, the LP5899-Q1 automatically analyses the check bits and reports when an error is detected. When the data words are stored for reading by SPI, the start bit and check bits are removed from the data string.

The LP5899-Q1 automatically inserts the required end byte when forwarding the data words received by SPI peripheral to make sure that different SPI commands are recognized as different CCSI commands. When the data words are stored for reading by SPI, the end byte is removed from the data string.