SLVSH98A July   2023  – November 2023 LP8868U-Q1 , LP8868V-Q1 , LP8868W-Q1 , LP8868X-Q1 , LP8868Y-Q1 , LP8868Z-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Adaptive Off-Time Current Mode Control
        1. 7.3.1.1 Switching Frequency Settings
        2. 7.3.1.2 Spread Spectrum
      2. 7.3.2 Setting LED Current
      3. 7.3.3 Internal Soft Start
      4. 7.3.4 Dimming Mode
        1. 7.3.4.1 PWM dimming
        2. 7.3.4.2 Analog dimming
        3. 7.3.4.3 Hybrid Dimming
        4. 7.3.4.4 Flexible Dimming
      5. 7.3.5 Undervoltage Lockout
      6. 7.3.6 Fault Protection
      7. 7.3.7 Thermal Foldback
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 LP8868XQDMTRQ1 12-V Input, 1-A Output, 8-piece LED With Boost Topology
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Inductor Selection
          2. 8.2.1.2.2 Input Capacitor Selection
          3. 8.2.1.2.3 Output Capacitor Selection
          4. 8.2.1.2.4 Sense Resistor Selection
          5. 8.2.1.2.5 Other External Components Selection
        3. 8.2.1.3 Application Curves
      2. 8.2.2 LP8868YQDMTRQ1 12-V Input, 1-A Output, 5-piece LED With Buck-Boost Topology
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Inductor Selection
          2. 8.2.2.2.2 Input Capacitor Selection
          3. 8.2.2.2.3 Output Capacitor Selection
          4. 8.2.2.2.4 Sense Resistor Selection
          5. 8.2.2.2.5 Other External Components Selection
        3. 8.2.2.3 Application Curves
      3. 8.2.3 LP8868ZQDMTRQ1 12-V Input, 2-A Output, 1-piece LED With Buck Topology
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
          1. 8.2.3.2.1 Inductor Selection
          2. 8.2.3.2.2 Input Capacitor Selection
          3. 8.2.3.2.3 Output Capacitor Selection
          4. 8.2.3.2.4 Sense Resistor Selection
          5. 8.2.3.2.5 Other External Components Selection
        3. 8.2.3.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Output Capacitor Selection

The output capacitor reduces the high-frequency current ripple through the LED string. Excessive current ripple increases the RMS current in the LED string, therefore increasing the LED temperature.

1. Calculate the total dynamic resistance of the LED string (RLED) using the LED manufacturer's datasheet.

2. Calculate the required impedance of the output capacitor (ZOUT) given the acceptable peak-to-peak ripple current through the LED string, ILED(ripple) . IL(ripple) is the peak-to-peak inductor ripple current as calculated with the selected inductor.

3. Calculate the minimum effective output capacitance required.

4. Increase the output capacitance appropriately due to the derating effect of applied DC voltage.

See Equation 18, Equation 19, and Equation 20.

Equation 7. R L E D = V F I F × #   o f   L E D s
Equation 8. Z C O U T = R L E D × I L E D ( r i p p l e ) I L ( m a x ) - I L E D ( r i p p l e )
Equation 9. C C O U T = 1 2 π × f S W × Z C O U T

Once the output capacitor is chosen, Equation 33 can be used to estimate the peak-to-peak ripple current through the LED string.

Equation 10. I L E D ( r i p p l e ) = Z C O U T × I L ( r i p p l e ) Z C O U T + R L E D

Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. In this design, a 10-µF, 50-V X7R ceramic capacitor is chosen.