SNOS413E August   2000  – November 2016 LPV321-N , LPV324-N , LPV358-N

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 DC Electrical Characteristics - 2.7 V
    6. 6.6 AC Electrical Characteristics - 2.7 V
    7. 6.7 DC Electrical Characteristics - 5 V
    8. 6.8 AC Electrical Characteristics - 5 V
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Size
      2. 7.3.2 Signal Integrity
      3. 7.3.3 Simplified Board Layout
      4. 7.3.4 Low Supply Current
      5. 7.3.5 Low Supply Voltage
      6. 7.3.6 Rail-to-Rail Output
      7. 7.3.7 Input Includes Ground
    4. 7.4 Device Functional Modes
      1. 7.4.1 Capacitive Load Tolerance
      2. 7.4.2 Input Bias Current Cancellation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Simple Low-Pass Active Filter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Difference Amplifier
      3. 8.2.3 Instrumentation Circuits
        1. 8.2.3.1 Three Operating Amplifier Instrumentation
        2. 8.2.3.2 Two Operating Amplifier Instrumentation
        3. 8.2.3.3 Single-Supply Inverting Amplifier
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Community Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Differential input voltage ±Supply voltage
Supply voltage (V+– V) 5.5 V
Output short circuit to V + See(2)
Output short circuit to V See(3)
Junction temperature, TJ(MAX)(4) 150 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Shorting output to V+ will adversely affect reliability.
Shorting output to V will adversely affect reliability.
The maximum power dissipation is a function of TJ(MAX) and RθJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.

ESD Ratings

VALUE UNIT
LPV321-N in DBV and DCK Packages
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1500 V
Machine model ±100
LPV358-N in D and DGK Packages
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1500 V
Machine model ±100
LPV324-N in D and PW Packages
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Machine model ±100
Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply voltage 2.7 5 V
Operating temperature –40 85 °C

Thermal Information

THERMAL METRIC(1) LPV321-N LPV358-N LPV324-N UNIT
DBV
(SOT-23)
DCK
(SC70)
DGK
(VSSOP)
D
(SOIC)
D
(SOIC)
PW
(TSSOP)
5 PINS 5 PINS 8 PINS 8 PINS 14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 206.6 296.7 187.5 130.1 103.9 132.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 167.2 128.1 77.7 74.3 61.6 59.1 °C/W
RθJB Junction-to-board thermal resistance 65.5 74.3 108 70.7 58.4 75.1 °C/W
ψJT Junction-to-top characterization parameter 50.2 6.5 15.2 23.1 21.2 10.8 °C/W
ψJB Junction-to-board characterization parameter 65.1 73.6 106.5 70.2 58.1 74.58 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

DC Electrical Characteristics – 2.7 V

TJ = 25°C, V+ = 2.7 V, V = 0 V, VCM = 1 V, VO = V+/2, and R L > 1 MΩ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VOS Input offset voltage 1.2 7 mV
TCVOS Input offset voltage average drift 2 µV/°C
IB Input bias current 1.7 50 nA
IOS Input offset current 0.6 40 nA
CMRR Common mode rejection ratio 0 V ≤ VCM ≤ 1.7 V 50 70 dB
PSRR Power supply rejection ratio 2.7 V ≤ V+ ≤ 5 V, VO = 1 V, VCM = 1 V 50 65 dB
VCM Input common-mode voltage For CMRR ≥ 50 dB 0 −0.2 V
1.9 1.7
VO Output swing RL = 100 kΩ to 1.35 V V+ − 100 V+ − 3 mV
80 180
IS Supply current LPV321-N 4 8 µA
LPV358-N, both amplifiers 8 16
LPV324-N, all four amplifiers 16 24
All limits are specified by testing or statistical analysis.
Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production material.

AC Electrical Characteristics – 2.7 V

TJ = 25°C, V+ = 2.7 V, V = 0 V, VCM = 1 V, VO = V+/2, and R L > 1 MΩ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
GBWP Gain-bandwidth product CL = 22 pF 112 kHz
Φm Phase margin 97 °
Gm Gain margin 35 dB
en Input-referred voltage noise f = 1 kHz 178 nV/√Hz
in Input-referred current noise f = 1 kHz 0.5 pA/√Hz

DC Electrical Characteristics – 5 V

TJ = 25°C, V+ = 5 V, V = 0 V, VCM = 2 V, VO = V+/2, and R L > 1 MΩ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VOS Input offset voltage TJ = 25°C 1.5 7 mV
TJ = –40°C to 85°C 10
TCVOS Input offset voltage average drift 2 µV/°C
IB Input bias current TJ = 25°C 2 50 nA
TJ = –40°C to 85°C 60
IOS Input offset current TJ = 25°C 0.6 40 nA
TJ = –40°C to 85°C 50
CMRR Common mode rejection ratio 0 V ≤ VCM ≤ 4 V 50 71 dB
PSRR Power supply rejection ratio 2.7 V ≤ V+ ≤ 5 V, VO = 1 V, VCM = 1 V 50 65 dB
VCM Input common-mode voltage For CMRR ≥ 50 dB 0 −0.2 V
4.2 4
AV Large signal voltage gain(1) RL = 100 kΩ TJ = 25°C 15 100 V/mV
TJ = –40°C to 85°C 10
VO Output swing Sourcing
RL = 100 kΩ to 2.5 V
TJ = 25°C V+ −100 V+ −3.5 mV
TJ = –40°C to 85°C V+ −200
Sinking
RL = 100 kΩ to 2.5 V
TJ = 25°C 90 180
TJ = –40°C to 85°C 220
IO Output short circuit current sourcing LPV3xx-N, VO = 0 V 2 16 mA
Output short circuit current sinking LPV321-N, VO = 5 V 20 60
LPV324-N and LPV358-N, VO = 5 V 11 16
IS Supply current LPV321-N TJ = 25°C 9 12 µA
TJ = –40°C to 85°C 15
LPV358-N,
Both amplifiers
TJ = 25°C 15 20
TJ = –40°C to 85°C 24
LPV324-N,
All four amplifiers
TJ = 25°C 28 42
TJ = –40°C to 85°C 46
RL is connected to V -. The output voltage is 0.5 V ≤ VO ≤ 4.5 V.

AC Electrical Characteristics – 5 V

TJ = 25°C, V+ = 5 V, V = 0 V, VCM = 2 V, VO = V+/2, and R L > 1MΩ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
SR Slew rate(1)   0.1 V/µs
GBWP Gain-bandwidth product CL = 22 pF 152 kHz
Φm Phase margin 87 °
Gm Gain margin 19 dB
en Input-referred voltage noise f = 1 kHz 146 nV/√Hz
in Input-referred current noise f = 1 kHz 0.3 pA/√Hz
Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates.

Typical Characteristics

VS = 5 V, single supply, and TA = 25°C (unless otherwise noted)
LPV321-N LPV324-N LPV358-N 100920b4.gif Figure 1. Supply Current vs Supply Voltage (LPV321-N)
LPV321-N LPV324-N LPV358-N 10092041.png Figure 3. Sourcing Current vs Output Voltage
LPV321-N LPV324-N LPV358-N 10092043.png Figure 5. Sinking Current vs Output Voltage
LPV321-N LPV324-N LPV358-N 100920b6.gif Figure 7. Output Voltage Swing vs Supply Voltage
LPV321-N LPV324-N LPV358-N 10092070.png Figure 9. Input Current Noise vs Frequency
LPV321-N LPV324-N LPV358-N 10092073.png Figure 11. Crosstalk Rejection vs Frequency
LPV321-N LPV324-N LPV358-N 10092063.png Figure 13. CMRR vs Frequency
LPV321-N LPV324-N LPV358-N 10092065.png Figure 15. CMRR vs Input Common Mode Voltage
LPV321-N LPV324-N LPV358-N 10092046.png Figure 17. ΔVOS vs VCM
LPV321-N LPV324-N LPV358-N 10092071.png Figure 19. Input Voltage vs Output Voltage
LPV321-N LPV324-N LPV358-N 10092051.png Figure 21. Open-Loop Frequency Response
LPV321-N LPV324-N LPV358-N 10092053.png Figure 23. Gain and Phase vs Capacitive Load
LPV321-N LPV324-N LPV358-N 10092050.png Figure 25. Noninverting Large Signal Pulse Response
LPV321-N LPV324-N LPV358-N 10092047.png Figure 27. Inverting Large Signal Pulse Response
LPV321-N LPV324-N LPV358-N 10092061.png Figure 29. Stability vs Capacitive Load
LPV321-N LPV324-N LPV358-N 10092059.png Figure 31. Stability vs Capacitive Load
LPV321-N LPV324-N LPV358-N 10092062.png Figure 33. THD vs Frequency
LPV321-N LPV324-N LPV358-N 100920b7.png Figure 35. Short Circuit Current vs Temperature (Sinking)
LPV321-N LPV324-N LPV358-N 100920b5.png Figure 2. Input Current vs Temperature
LPV321-N LPV324-N LPV358-N 10092042.png Figure 4. Sourcing Current vs Output Voltage
LPV321-N LPV324-N LPV358-N 10092044.png Figure 6. Sinking Current vs Output Voltage
LPV321-N LPV324-N LPV358-N 10092056.png Figure 8. Input Voltage Noise vs Frequency
LPV321-N LPV324-N LPV358-N 10092068.png Figure 10. Input Current Noise vs Frequency
LPV321-N LPV324-N LPV358-N 10092072.png Figure 12. PSRR vs Frequency
LPV321-N LPV324-N LPV358-N 10092064.png Figure 14. CMRR vs Input Common Mode Voltage
LPV321-N LPV324-N LPV358-N 10092045.png Figure 16. ΔVOS vs VCM
LPV321-N LPV324-N LPV358-N 10092069.png Figure 18. Input Voltage vs Output Voltage
LPV321-N LPV324-N LPV358-N 10092052.png Figure 20. Open-Loop Frequency Response
LPV321-N LPV324-N LPV358-N 10092054.png Figure 22. Gain and Phase vs Capacitive Load
LPV321-N LPV324-N LPV358-N 10092055.png Figure 24. Slew Rate vs Supply Voltage
LPV321-N LPV324-N LPV358-N 10092049.png Figure 26. Noninverting Small Signal Pulse Response
LPV321-N LPV324-N LPV358-N 10092048.png Figure 28. Inverting Small Signal Pulse Response
LPV321-N LPV324-N LPV358-N 10092060.png Figure 30. Stability vs Capacitive Load
LPV321-N LPV324-N LPV358-N 10092058.png Figure 32. Stability vs Capacitive Load
LPV321-N LPV324-N LPV358-N 10092074.png Figure 34. Open-Loop Output Impedance vs Frequency
LPV321-N LPV324-N LPV358-N 100920b8.png Figure 36. Short Circuit Current vs Temperature (Sourcing)