SBOS867D August   2017  – September 2024 OPA838

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics VS = 5 V
    6. 6.6 Electrical Characteristics VS = 3 V
    7. 6.7 Typical Characteristics: VS = 5 V
    8. 6.8 Typical Characteristics: VS = 3 V
    9. 6.9 Typical Characteristics: Over Supply Range
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Common-Mode Voltage Range
      2. 7.3.2 Output Voltage Range
      3. 7.3.3 Power-Down Operation
      4. 7.3.4 Trade-Offs in Selecting The Feedback Resistor Value
      5. 7.3.5 Driving Capacitive Loads
    4. 7.4 Device Functional Modes
      1. 7.4.1 Split-Supply Operation (±1.35 V to ±2.7 V)
      2. 7.4.2 Single-Supply Operation (2.7 V to 5.4 V)
      3. 7.4.3 Power Shutdown Operation
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Noninverting Amplifier
      2. 8.1.2 Inverting Amplifier
      3. 8.1.3 Output DC Error Calculations
      4. 8.1.4 Output Noise Calculations
    2. 8.2 Typical Applications
      1. 8.2.1 High-Gain Differential I/O Designs
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Transimpedance Amplifier
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 TINA-TI™ Simulation Software (Free Download)
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DBV|6
  • DCK|5
  • DCK|6
  • DXB|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Shutdown Operation

As noted, the 6-pin packages that offer a power-shutdown feature must have that pin asserted. To retain the lowest possible shutdown power, no internal pullup resistors are present in the OPA838. The control threshold is referenced off the negative supply with a nominal internal threshold near 1 V greater than the negative supply. Worst-case tolerances dictate the required low-level voltage to provide a shutdown of 0.55 V (or less) greater than the negative supply, and 1.5 V (or more) greater than the negative supply to maintain enabled operation. The required control pin current is less than ±50 nA. For SOT‑23‑6 applications that do not require a shutdown functionality, connect the disable control pin to the positive supply. For SC70 package applications that do not require a shutdown, use the 5-pin package where the control pad is internally connected to the positive supply. When disabled, the output nominally goes to a high-impedance state. However, the feedback network provides a path for discharge for an off-state voltage condition. Figure 6-51 illustrates the turn-on time with a sinusoidal input that is relatively slow, while Figure 6-52 illustrates the turn-off time is fast. Figure 6-53 and Figure 6-54 illustrate the single-supply operation with a dc input to produce a midsupply output at gains of 6 V/V and 10 V/V. In all cases, the output voltage transitions to a point close to the positive supply voltage and then moves to the desired output voltage 0.5 µs to 1.5 µs after the disable control line goes high. The supply current in shutdown is a low 0.1 µA nominally with a maximum 1 µA.