SCPS148I October   2005  – June 2022 PCA9546A

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Interface Timing Requirements
    7. 6.7 Interrupt and Reset Timing Requirements
    8. 6.8 Switching Characteristics
  7. Parameter Measurement Information
    1.     16
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 RESET Input
        1. 8.4.1.1 RESET Errata
          1.        24
          2.        25
      2. 8.4.2 Power-On Reset
    5. 8.5 Programming
      1. 8.5.1 I2C Interface
    6. 8.6 Control Register
      1. 8.6.1 Device Address
      2. 8.6.2 Control Register Description
      3. 8.6.3 Control Register Definition
  9. Application Information Disclaimer
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Power-On Reset Requirements
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Design Requirements

The A0, A1, and A2 pins are hardware selectable to control the slave address of the PCA9546A. These pins may be tied directly to GND or VCC in the application.

If multiple slave channels will be activated simultaneously in the application, then the total IOL from SCL/SDA to GND on the master side will be the sum of the currents through all pull-up resistors, Rp.

The pass-gate transistors of the PCA9546A are constructed such that the VCC voltage can be used to limit the maximum voltage that is passed from one I2C bus to another.

Figure 9-2 shows the voltage characteristics of the pass-gate transistors (note that the graph was generated using data specified in the Electrical Characteristics section of this data sheet). In order for the PCA9546A to act as a voltage translator, the Vpass voltage must be equal to or lower than the lowest bus voltage. For example, if the main bus is running at 5 V and the downstream buses are 3.3 V and 2.7 V, Vpass must be equal to or below 2.7 V to effectively clamp the downstream bus voltages. As shown in Figure 9-2, Vpass(max) is 2.7 V when the PCA9546A supply voltage is 4 V or lower, so the PCA9546A supply voltage could be set to 3.3 V. Pull-up resistors then can be used to bring the bus voltages to their appropriate levels (see Figure 9-1).